frequency relaxation
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 6)

H-INDEX

16
(FIVE YEARS 0)

2022 ◽  
Vol 92 (1) ◽  
pp. 147
Author(s):  
Ж.А. Сальникова ◽  
А.П. Смирнов ◽  
А.А. Богданов ◽  
Н.А. Верлов ◽  
Р.А. Кастро

The article presents the results of a study by the method of dielectric spectroscopy of high-frequency relaxation processes in the blood serum of intact mice and mice vaccinated with an oncological disease - Ehrlich's ascites carcinoma. Using the formalism of the electrical module, the relaxation parameters were calculated for the serum samples of the two studied systems.


2021 ◽  
Vol 7 (6) ◽  
pp. 76
Author(s):  
Cyril Rajnák ◽  
Ján Titiš ◽  
Roman Boča

A series of mononuclear Co(II) complexes showing slow magnetic relaxation is assessed from the point of view of relaxation mechanisms. In certain cases, the reciprocating thermal behavior is detected: On cooling, the slow relaxation time is prolonged until a certain limit and then, unexpectedly, is accelerated. The low-temperature magnetic data can be successfully fitted by assuming Raman and/or phonon bottleneck mechanisms of the slow magnetic relaxation for the high-frequency relaxation channel. An additional term with the negative temperature exponent is capable of reproducing the whole experimental dataset.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2606
Author(s):  
Shin Yagihara ◽  
Rio Kita ◽  
Naoki Shinyashiki ◽  
Hironobu Saito ◽  
Yuko Maruyama ◽  
...  

The dynamics of a hydrogen bonding network (HBN) relating to macroscopic properties of hydrogen bonding liquids were observed as a significant relaxation process by dielectric spectroscopy measurements. In the cases of water and water rich mixtures including biological systems, a GHz frequency relaxation process appearing at around 20 GHz with the relaxation time of 8.2 ps is generally observed at 25 °C. The GHz frequency process can be explained as a rate process of exchanges in hydrogen bond (HB) and the rate becomes higher with increasing HB density. In the present work, this study analyzed the GHz frequency process observed by suitable open-ended coaxial electrodes, and physical meanings of the fractal nature of water structures were clarified in various aqueous systems. Dynamic behaviors of HBN were characterized by a combination of the average relaxation time and the distribution of the relaxation time. This fractal analysis offered an available approach to both solution and dispersion systems with characterization of the aggregation or dispersion state of water molecules. In the case of polymer-water mixtures, the HBN and polymer networks penetrate each other, however, the HBN were segmented and isolated more by dispersed and aggregated particles in the case of dispersion systems. These HBN fragments were characterized by smaller values of the fractal dimension obtained from the fractal analysis. Some examples of actual usages suggest that the fractal analysis is now one of the most effective tools to understand the molecular mechanism of HBN in aqueous complex materials including biological systems.


2017 ◽  
Vol 753 ◽  
pp. 163-167
Author(s):  
Rene Alejandro Castro ◽  
Nadezhda Ivanovna Anisimova ◽  
Liliya Ansafovna Nabiullina ◽  
Evgeny Borisovich Shadrin

Features of processes of a dielectric relaxation and charge transport in photorefractive sillenite crystals Bi12TiO20 at low frequency range are investigated. It was found that the dispersion of dielectric permittivity ε' in crystals Bi12TiO20 is characterized by its growth with lowering frequency and rising temperature. This behaviour may be related to existence of dipole-relaxation polarization mechanism. The frequency dependence of dielectric loss tgδ reveals the existence of low frequency relaxation peaks in the studied temperature range. From the conductivity dependence on the frequency and temperature it was found that conductivity σ increases as frequency increases in the low frequency range. The observed dependence σ(ω)≈Аωs indicates that transport mechanism is due to hopping of carriers via localized electron states. The charge transport is thermally activated process in which activation energy Ea = (0.82±0.03) eV.


2017 ◽  
Vol 31 (12) ◽  
pp. 1750134 ◽  
Author(s):  
Oktay Samadov ◽  
Oktay Alakbarov ◽  
Arzu Najafov ◽  
Samir Samadov ◽  
Nizami Mehdiyev ◽  
...  

The dielectric and impedance spectra of TlGaSe2 crystals have been studied at temperatures in the 100–500 K range in the alternating current (AC [Formula: see text]1 V). It has been shown that the conductivity of TlGaSe2 crystals is mainly an ionic characteristic at temperatures above 400 K. The well-defined peak at the frequency dependence of the imaginary part of impedance [Formula: see text] is observed in the 215–500 K temperature range. In a constant field, there occurs a significant decrease in electrical conductivity [Formula: see text] in due course. The ionic contribution to conductivity (76% at [Formula: see text]) has been estimated from a kinetic change in electrical conductivity [Formula: see text] under the influence of a constant electric field. The diagram analysis in a complex plane [Formula: see text] has been conducted by applying the method of an equivalent circuit of the substation. It has been determined that the average relaxation time of the electric module of the sample is [Formula: see text].


2016 ◽  
Vol 846 ◽  
pp. 311-317
Author(s):  
Mohd Noor Mat ◽  
M.K. Halimah ◽  
Wan Mohd Daud Wan Yusoff ◽  
H. Mansor ◽  
H. Nizam ◽  
...  

Dielectric relaxation and conductivity of Ni0.3Zn0.7Fe2O4 (NZF) were studied in the frequency range between 0.01 Hz to 3 MHz and temperature range within 313 K to 473 K. The sample was prepared by mixing Zinc Oxide, Nickel Oxide and Iron Oxide and sintered at 1573 K for 10 hours long. Dielectric properties were studied using Novo Control Dielectric Spectrometer. Dielectric relaxation and conductivity phenomena were discussed using an empirical model to key out the dielectric relaxation process. Analyze peak frequency relaxation process consist of four slopes to explain the dielectric relaxation process. The conductivity of the sample indicates an activated process and activation energy of dc conductivity is 0.44 ± 0.01 eV.


Sign in / Sign up

Export Citation Format

Share Document