scholarly journals GSK-3β activation is required for ZIP-induced disruption of learned fear

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sukwoon Song ◽  
Jihye Kim ◽  
Kyungjoon Park ◽  
Junghwa Lee ◽  
Sewon Park ◽  
...  

Abstract The myristoylated zeta inhibitory peptide (ZIP), which was originally developed as a protein kinase C/Mζ (PKCζ/PKMζ) inhibitor, is known to produce the loss of different forms of memories. However, ZIP induces memory loss even in the absence of PKMζ, and its mechanism of action, therefore, remains elusive. Here, through a kinome-wide screen, we found that glycogen synthase kinase 3 beta (GSK-3β) was robustly activated by ZIP in vitro. ZIP induced depotentiation (a cellular substrate of memory erasure) of conditioning-induced potentiation at LA synapses, and the ZIP-induced depotentiation was prevented by a GSK-3β inhibitor, 6-bromoindirubin-3-acetoxime (BIO-acetoxime). Consistently, GSK-3β inhibition by BIO-acetoxime infusion or GSK-3β knockdown by GSK-3β shRNA in the LA attenuated ZIP-induced disruption of learned fear. Furthermore, conditioned fear was decreased by expression of a non-inhibitable form of GSK-3β in the LA. Our findings suggest that GSK-3β activation is a critical step for ZIP-induced disruption of memory.

2002 ◽  
Vol 22 (7) ◽  
pp. 2099-2110 ◽  
Author(s):  
Xianjun Fang ◽  
Shuangxing Yu ◽  
Janos L. Tanyi ◽  
Yiling Lu ◽  
James R. Woodgett ◽  
...  

ABSTRACT Lysophosphatidic acid (LPA) is a natural phospholipid with multiple biological functions. We show here that LPA induces phosphorylation and inactivation of glycogen synthase kinase 3 (GSK-3), a multifunctional serine/threonine kinase. The effect of LPA can be reconstituted by expression of Edg-4 or Edg-7 in cells lacking LPA responses. Compared to insulin, LPA stimulates only modest phosphatidylinositol 3-kinase (PI3K)-dependent activation of protein kinase B (PKB/Akt) that does not correlate with the magnitude of GSK-3 phosphorylation induced by LPA. PI3K inhibitors block insulin- but not LPA-induced GSK-3 phosphorylation. In contrast, the effect of LPA, but not that of insulin or platelet-derived growth factor (PDGF), is sensitive to protein kinase C (PKC) inhibitors. Downregulation of endogenous PKC activity selectively reduces LPA-mediated GSK-3 phosphorylation. Furthermore, several PKC isotypes phosphorylate GSK-3 in vitro and in vivo. To confirm a specific role for PKC in regulation of GSK-3, we further studied signaling properties of PDGF receptor β subunit (PDGFRβ) in HEK293 cells lacking endogenous PDGF receptors. In clones expressing a PDGFRβ mutant wherein the residues that couple to PI3K and other signaling functions are mutated with the link to phospholipase Cγ (PLCγ) left intact, PDGF is fully capable of stimulating GSK-3 phosphorylation. The process is sensitive to PKC inhibitors in contrast to the response through the wild-type PDGFRβ. Therefore, growth factors, such as PDGF, which control GSK-3 mainly through the PI3K-PKB/Akt module, possess the ability to regulate GSK-3 through an alternative, redundant PLCγ-PKC pathway. LPA and potentially other natural ligands primarily utilize a PKC-dependent pathway to modulate GSK-3.


Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 610
Author(s):  
Robin Park ◽  
Andrew L. Coveler ◽  
Ludimila Cavalcante ◽  
Anwaar Saeed

Glycogen synthase kinase-3 beta is a ubiquitously and constitutively expressed molecule with pleiotropic function. It acts as a protooncogene in the development of several solid tumors including pancreatic cancer through its involvement in various cellular processes including cell proliferation, survival, invasion and metastasis, as well as autophagy. Furthermore, the level of aberrant glycogen synthase kinase-3 beta expression in the nucleus is inversely correlated with tumor differentiation and survival in both in vitro and in vivo models of pancreatic cancer. Small molecule inhibitors of glycogen synthase kinase-3 beta have demonstrated therapeutic potential in pre-clinical models and are currently being evaluated in early phase clinical trials involving pancreatic cancer patients with interim results showing favorable results. Moreover, recent studies support a rationale for the combination of glycogen synthase kinase-3 beta inhibitors with chemotherapy and immunotherapy, warranting the evaluation of novel combination regimens in the future.


1999 ◽  
Vol 277 (2) ◽  
pp. E299-E307 ◽  
Author(s):  
Sanjay Bhanot ◽  
Baljinder S. Salh ◽  
Subodh Verma ◽  
John H. McNeill ◽  
Steven L. Pelech

The effects of tail-vein insulin injection (2 U/kg) on the regulation of protein-serine kinases in hindlimb skeletal muscle were investigated in hyperinsulinemic hypertensive fructose-fed (FF) animals that had been fasted overnight. Basal protein kinase B (PKB) activity was elevated about twofold in FF rats and was not further stimulated by insulin. Phosphatidylinositol 3-kinase (PI3K), which lies upstream of PKB, was increased ∼3.5-fold within 2–5 min by insulin in control rats. Basal and insulin-activated PI3K activities were further enhanced up to 2-fold and 1.3-fold, respectively, in FF rats. The 70-kDa S6 kinase (S6K) was stimulated about twofold by insulin in control rats. Both basal and insulin-stimulated S6K activity was further enhanced up to 1.5-fold and 3.5-fold, respectively, in FF rats. In control rats, insulin caused a 40–50% reduction of the phosphotransferase activity of the β-isoform of glycogen synthase kinase 3 (GSK-3β), which is a PKB target in vitro. Basal GSK-3β activity was decreased by ∼40% in FF rats and remained unchanged after insulin treatment. In summary, 1) the PI3K → PKB → S6K pathway was upregulated under basal conditions, and 2) insulin stimulation of PI3K and S6K activities was enhanced, but both PKB and GSK-3 were refractory to the effects of insulin in FF rats.


2008 ◽  
Vol 294 (6) ◽  
pp. E1169-E1177 ◽  
Author(s):  
Ziva Liberman ◽  
Batya Plotkin ◽  
Tamar Tennenbaum ◽  
Hagit Eldar-Finkelman

Serine/threonine phosphorylation of insulin receptor substrate-1 (IRS-1) is an important negative modulator of insulin signaling. Previously, we showed that glycogen synthase kinase-3 (GSK-3) phosphorylates IRS-1 at Ser332. However, the fact that GSK-3 requires prephosphorylation of its substrates suggested that Ser336 on IRS-1 was the “priming” site phosphorylated by an as yet unknown protein kinase. Here, we sought to identify this “priming kinase” and to examine the phosphorylation of IRS-1 at Ser336 and Ser332 in physiologically relevant animal models. Of several stimulators, only the PKC activator phorbol ester PMA enhanced IRS-1 phosphorylation at Ser336. Treatment with selective PKC inhibitors prevented this PMA effect and suggested that a conventional PKC was the priming kinase. Overexpression of PKCα or PKCβII isoforms in cells enhanced IRS-1 phosphorylation at Ser336 and Ser332, and in vitro kinase assays verified that these two kinases directly phosphorylated IRS-1 at Ser336. The expression level and activation state of PKCβII, but not PKCα, were remarkably elevated in the fat tissues of diabetic ob/ob mice and in high-fat diet-fed mice compared with that from lean animals. Elevated levels of PKCβII were also associated with enhanced phosphorylation of IRS-1 at Ser336/332 and elevated activity of GSK-3β. Finally, adenoviral mediated expression of PKCβII in adipocytes enhancedphosphorylation of IRS-1 at Ser336. Taken together, our results suggest that IRS-1 is sequentially phosphorylated by PKCβII and GSK-3 at Ser336 and Ser332. Furthermore, these data provide evidence for the physiological relevance of these phosphorylation events in the pathogenesis of insulin resistance in fat tissue.


Sign in / Sign up

Export Citation Format

Share Document