intracellular signalling
Recently Published Documents


TOTAL DOCUMENTS

455
(FIVE YEARS 40)

H-INDEX

55
(FIVE YEARS 4)

Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 63
Author(s):  
Rosamaria Pennisi ◽  
Maria Musarra-Pizzo ◽  
Tania Velletri ◽  
Antonino Mazzaglia ◽  
Giulia Neri ◽  
...  

In the last decade, nanotechnological progress has generated new opportunities to improve the safety and efficacy of conventional anticancer therapies. Compared with other carriers, graphene nanoplatforms possess numerous tunable functionalities for the loading of multiple bioactive compounds, although their biocompatibility is still a debated concern. Recently, we have investigated the modulation of genes involved in cancer-associated canonical pathways induced by graphene engineered with cyclodextrins (GCD). Here, we investigated the GCD impact on cells safety, the HEp-2 responsiveness to Doxorubicin (DOX) and the cancer-related intracellular signalling pathways modulated by over time exposure to DOX loaded on GCD (GCD@DOX). Our studies evidenced that both DOX and GCD@DOX induced p53 and p21 signalling resulting in G0/G1 cell cycle arrest. A genotoxic behaviour of DOX was reported via detection of CDK (T14/Y15) activation and reduction of Wee-1 expression. Similarly, we found a cleavage of PARP by DOX within 72 h of exposure. Conversely, GCD@DOX induced a late cleavage of PARP, which could be indicative of less toxic effect due to controlled release of the drug from the GCD nanocarrier. Finally, the induction of the autophagy process supports the potential recycling of DOX with the consequent limitation of its toxic effects. Together, these findings demonstrate that GCD@DOX is a biocompatible drug delivery system able to evade chemoresistance and doxorubicin toxicity.


Author(s):  
Jolet Y. Mimpen ◽  
Sarah J. B. Snelling ◽  
Andrew J. Carr ◽  
Stephanie G. Dakin

Interleukin (IL)-17A, a pro-inflammatory cytokine that is linked to the pathology of several inflammatory diseases, has been shown to be upregulated in early human tendinopathy and to mediate inflammatory and tissue remodelling events. However, it remains unclear which cells in tendons can respond to IL-17A, and how IL-17A, and its family members IL-17F and IL-17AF, can affect intracellular signalling activation and mRNA expression in healthy and diseased tendon-derived fibroblasts. Using well-phenotyped human tendon samples, we show that IL-17A and its receptors IL-17RA and IL-17RC are present in healthy hamstring, and tendinopathic and torn supraspinatus tendon tissue. Next, we investigated the effects of IL-17A, IL-17F, or IL-17AF on cultured patient-derived healthy and diseased tendon-derived fibroblasts. In these experiments, IL-17A treatment significantly upregulated IL6, MMP3, and PDPN mRNA expression in diseased tendon-derived fibroblasts. IL-17AF treatment induced moderate increases in these target genes, while little change was observed with IL-17F. These trends were reflected in the activation of intracellular signalling proteins p38 and NF-κB p65, which were significantly increased by IL-17A, modestly increased by IL-17AF, and not increased by IL-17F. In combination with TNF-α, all three IL-17 cytokines induced IL6 and MMP3 mRNA expression to similar levels. Therefore, this study confirms that healthy and diseased tendon-derived fibroblasts are responsive to IL-17 cytokines and that IL-17A induces the most profound intracellular signalling activation and mRNA expression of inflammatory genes, followed by IL-17AF, and finally IL-17F. The ability of IL-17 cytokines to induce a direct response and activate diverse pro-inflammatory signalling pathways through synergy with other inflammatory mediators suggests a role for IL-17 family members as amplifiers of tendon inflammation and as potential therapeutic targets in tendinopathy.


2021 ◽  
Author(s):  
Yusman Manchanda ◽  
Zenouska Ramchunder ◽  
Maria M Shchepinova ◽  
Guy A Rutter ◽  
Asuka Inoue ◽  
...  

Mini-G proteins are engineered thermostable variants of Gα subunits designed to specifically stabilise G protein-coupled receptors (GPCRs) in their active conformation for structural analyses. Due to their smaller size and ease of use, they have become popular tools in recent years to assess specific GPCR behaviours in cells, both as reporters of receptor coupling to each G protein subtype and for in-cell assays designed to quantify compartmentalised receptor signalling from a range of subcellular locations. Here, we describe a previously unappreciated consequence of the co-expression of mini-G proteins with their cognate GPCRs, namely a profound disruption in GPCR trafficking and intracellular signalling caused by the co-expression of the specific mini-G subtype coupled to the affected receptor. We studied the Gαs-coupled pancreatic beta cell class B GPCR glucagon-like peptide-1 receptor (GLP-1R) as a model to describe in detail the molecular consequences derived from this effect, including a complete halt in β-arrestin-2 recruitment and receptor internalisation, despite near-normal levels of receptor GRK2 recruitment and lipid nanodomain segregation, as well as the disruption of endosomal GLP-1R signalling by mini-Gs co-expression. We also extend our analysis to a range of other prototypical GPCRs covering the spectrum of Gα subtype coupling preferences, to unveil a widely conserved phenomenon of GPCR internalisation blockage by specific mini-G proteins coupled to a particular receptor. Our results have important implications for the design of methods to assess intracellular GPCR signalling. We also present an alternative adapted bystander intracellular signalling assay for the GLP-1R in which we substitute the mini-Gs by a nanobody, Nb37, with specificity for active Gαs:GPCR complexes and no deleterious effect on the capacity for GLP-1R internalisation.


2021 ◽  
Vol 8 (9) ◽  
Author(s):  
Jonggul Lee ◽  
Donggu Lee ◽  
Yangjin Kim

In various diseases, the STAT family display various cellular controls over various challenges faced by the immune system and cell death programs. In this study, we investigate how an intracellular signalling network (STAT1, STAT3, Bcl-2 and BAX) regulates important cellular states, either anti-apoptosis or apoptosis of cancer cells. We adapt a mathematical framework to illustrate how the signalling network can generate a bi-stability condition so that it will induce either apoptosis or anti-apoptosis status of tumour cells. Then, we use this model to develop several anti-tumour strategies including IFN-β infusion. The roles of JAK-STATs signalling in regulation of the cell death program in cancer cells and tumour growth are poorly understood. The mathematical model unveils the structure and functions of the intracellular signalling and cellular outcomes of the anti-tumour drugs in the presence of IFN-β and JAK stimuli. We identify the best injection order of IFN-β and DDP among many possible combinations, which may suggest better infusion strategies of multiple anti-cancer agents at clinics. We finally use an optimal control theory in order to maximize anti-tumour efficacy and minimize administrative costs. In particular, we minimize tumour volume and maximize the apoptotic potential by minimizing the Bcl-2 concentration and maximizing the BAX level while minimizing total injection amount of both IFN-β and JAK2 inhibitors (DDP).


Reproduction ◽  
2021 ◽  
Author(s):  
Archana Devi ◽  
Bhavana Kushwaha ◽  
Jagdamba P Maikhuri ◽  
Rajender Singh ◽  
Gopal Gupta

Sperm in most mammalian species including rat, mice and human are kept completely quiescent (motionless) and viable for up to a few weeks in the cauda epididymis before ejaculation. Vigorous motility is initiated almost instantly upon sperm release from cauda during ejaculation. The molecular mechanisms that suppress sperm motility but increase cell-survival during storage in cauda epididymis are not known. Intracellular signalling via phosphorylation cascades are quick events that may regulate motility and survival of transcriptionally inactive sperm. Pathscan® intracellular signalling array provided the preliminary picture of cell-signaling in quiescent and motile rat sperm, indicating upregulation of cell-survival pathways in quiescent sperm, which were downregulated during motility activation. Interactome of signalling-proteins involved in motility activation was constructed by STRING-software, which identified MAPK-p38, AKT, mTOR and their downstream target p70S6K as the key kinases regulating sperm function. Further validation was achieved by western-blotting and pathway activators/inhibitors. Immunofluorescence localized the kinase proteins in the sperm mid-piece region (mitochondria), a known extra-nuclear target for these signalling pathways. Activators of these kinases inhibited sperm motility but increased viability, and vice-versa was true for inhibitors, in most of the cases. Activators and inhibitors also affected sperm mitochondrial membrane potential, ATP content and ROS levels. Data suggest that sperm motility and survival are inversely complementary and critically regulated by intracellular cell signalling. Aberrant cell signalling in caudal sperm may affect cell survival (sperm concentration) and motility of ejaculated sperm.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sajjan Rajpoot ◽  
Kishore K. Wary ◽  
Rachel Ibbott ◽  
Dongfang Liu ◽  
Uzma Saqib ◽  
...  

The Toll-interleukin-1 Receptor (TIR) domain-containing adaptor protein (TIRAP) represents a key intracellular signalling molecule regulating diverse immune responses. Its capacity to function as an adaptor molecule has been widely investigated in relation to Toll-like Receptor (TLR)-mediated innate immune signalling. Since the discovery of TIRAP in 2001, initial studies were mainly focused on its role as an adaptor protein that couples Myeloid differentiation factor 88 (MyD88) with TLRs, to activate MyD88-dependent TLRs signalling. Subsequent studies delineated TIRAP’s role as a transducer of signalling events through its interaction with non-TLR signalling mediators. Indeed, the ability of TIRAP to interact with an array of intracellular signalling mediators suggests its central role in various immune responses. Therefore, continued studies that elucidate the molecular basis of various TIRAP-protein interactions and how they affect the signalling magnitude, should provide key information on the inflammatory disease mechanisms. This review summarizes the TIRAP recruitment to activated receptors and discusses the mechanism of interactions in relation to the signalling that precede acute and chronic inflammatory diseases. Furthermore, we highlighted the significance of TIRAP-TIR domain containing binding sites for several intracellular inflammatory signalling molecules. Collectively, we discuss the importance of the TIR domain in TIRAP as a key interface involved in protein interactions which could hence serve as a therapeutic target to dampen the extent of acute and chronic inflammatory conditions.


Author(s):  
Erika Peverelli ◽  
Donatella Treppiedi ◽  
Federica Mangili ◽  
Rosa Catalano ◽  
Anna Spada ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Sonam Gurung ◽  
Dany Perocheau ◽  
Loukia Touramanidou ◽  
Julien Baruteau

AbstractThe use of exosomes in clinical settings is progressively becoming a reality, as clinical trials testing exosomes for diagnostic and therapeutic applications are generating remarkable interest from the scientific community and investors. Exosomes are small extracellular vesicles secreted by all cell types playing intercellular communication roles in health and disease by transferring cellular cargoes such as functional proteins, metabolites and nucleic acids to recipient cells. An in-depth understanding of exosome biology is therefore essential to ensure clinical development of exosome based investigational therapeutic products. Here we summarise the most up-to-date knowkedge about the complex biological journey of exosomes from biogenesis and secretion, transport and uptake to their intracellular signalling. We delineate the major pathways and molecular players that influence each step of exosome physiology, highlighting the routes of interest, which will be of benefit to exosome manipulation and engineering. We highlight the main controversies in the field of exosome research: their adequate definition, characterisation and biogenesis at plasma membrane. We also delineate the most common identified pitfalls affecting exosome research and development. Unravelling exosome physiology is key to their ultimate progression towards clinical applications.


Author(s):  
Kenta Moriwaki ◽  
Francis K M Chan ◽  
Eiji Miyoshi

Abstract Death receptors, members of the tumour necrosis factor receptor (TNFR) superfamily, are characterized by the presence of a death domain in the cytosolic region. TNFR1, Fas and TNF-related apoptosis-inducing ligand receptors, which are prototypical death receptors, exert pleiotropic functions in cell death, inflammation and immune surveillance. Hence, they are involved in several human diseases. The activation of death receptors and downstream intracellular signalling is regulated by various posttranslational modifications, such as phosphorylation, ubiquitination and glycosylation. Glycosylation is one of the most abundant and versatile modifications to proteins and lipids, and it plays a critical role in the development and physiology of organisms, as well as the pathology of many human diseases. Glycans control a number of cellular events, such as receptor activation, signal transduction, endocytosis, cell recognition and cell adhesion. It has been demonstrated that oligo- and monosaccharides modify death receptors and intracellular signalling proteins and regulate their functions. Here, we review the current understanding of glycan modifications of death receptor signalling and their impact on signalling activity.


Sign in / Sign up

Export Citation Format

Share Document