intracellular signalling pathway
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 1)

H-INDEX

14
(FIVE YEARS 0)

2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Pengpeng Xia ◽  
Siqi Lian ◽  
Yunping Wu ◽  
Li Yan ◽  
Guomei Quan ◽  
...  

AbstractZinc (Zn) is an essential trace element in living organisms and plays a vital role in the regulation of both microbial virulence and host immune responses. A growing number of studies have shown that zinc deficiency or the internal Zn concentration does not meet the needs of animals and microbes, leading to an imbalance in zinc homeostasis and intracellular signalling pathway dysregulation. Competition for zinc ions (Zn2+) between microbes and the host exists in the use of Zn2+ to maintain cell structure and physiological functions. It also affects the interplay between microbial virulence factors and their specific receptors in the host. This review will focus on the role of Zn in the crosstalk between the host and microbe, especially for changes in microbial pathogenesis and nociceptive neuron-immune interactions, as it may lead to new ways to prevent or treat microbial infections.


Toxicology ◽  
2018 ◽  
Vol 394 ◽  
pp. 72-83 ◽  
Author(s):  
Samantha Louise Cooper ◽  
Hardip Sandhu ◽  
Afthab Hussain ◽  
Christopher Mee ◽  
Helen Maddock

2017 ◽  
Author(s):  
Andreas I. Reppas ◽  
Eduard A. Jorswieck ◽  
Haralampos Hatzikirou

Reliability of cell fate decision-making is crucial to biological development. Until today it has not been clear what are biology’s design principles that allow for reliable cell decision making under the influence of noise. Here, we attempt to answer this question by drawing an analogy between cell decision-making and information theory. We show that coupling of intracellular signalling pathway networks makes cell phenotypic responses reliable for noisy signals. As a proof of concept, we show how cis-interaction of the Notch-Delta pathway allows for increased performance under the influence of noise. Interestingly, in this case, the coupling principle leads to an efficient energy management. Finally, our postulated principle offers a compelling argument why cellular encoding is organized in a non-linear and non-hierarchical manner.


Open Biology ◽  
2015 ◽  
Vol 5 (11) ◽  
pp. 150094 ◽  
Author(s):  
Magdalena Machowska ◽  
Katarzyna Piekarowicz ◽  
Ryszard Rzepecki

The main functions of lamins are their mechanical and structural roles as major building blocks of the karyoskeleton. They are also involved in chromatin structure regulation, gene expression, intracellular signalling pathway modulation and development. All essential lamin functions seem to depend on their capacity for assembly or disassembly after the receipt of specific signals, and after specific, selective and precisely regulated interactions through their various domains. Reversible phosphorylation of lamins is crucial for their functions, so it is important to understand how lamin polymerization and interactions are modulated, and which sequences may undergo such modifications. This review combines experimental data with results of our in silico analyses focused on lamin phosphorylation in model organisms to show the presence of evolutionarily conserved sequences and to indicate specific in vivo phosphorylations that affect particular functions.


2013 ◽  
Vol 10 (1) ◽  
pp. 19-28 ◽  
Author(s):  
Maura Cárdenas-García ◽  
Pedro Pablo González-Pérez

Summary Apoptotic cell death plays a crucial role in development and homeostasis. This process is driven by mitochondrial permeabilization and activation of caspases. In this paper we adopt a tuple spaces-based modelling and simulation approach, and show how it can be applied to the simulation of this intracellular signalling pathway. Specifically, we are working to explore and to understand the complex interaction patterns of the caspases apoptotic and the mitochondrial role. As a first approximation, using the tuple spacesbased in silico approach, we model and simulate both the extrinsic and intrinsic apoptotic signalling pathways and the interactions between them. During apoptosis, mitochondrial proteins, released from mitochondria to cytosol are decisively involved in the process. If the decision is to die, from this point there is normally no return, cancer cells offer resistance to the mitochondrial induction.


2012 ◽  
Vol 40 (1) ◽  
pp. 67-72 ◽  
Author(s):  
Catherine Andreadi ◽  
Catherine Noble ◽  
Bipin Patel ◽  
Hong Jin ◽  
Maria M. Aguilar Hernandez ◽  
...  

The strength and duration of intracellular signalling pathway activation is a key determinant of the biological outcome of cells in response to extracellular cues. This has been particularly elucidated for the Ras/Raf/MEK [mitogen-activated growth factor/ERK (extracellular-signal-regulated kinase) kinase]/ERK signalling pathway with a number of studies in fibroblasts showing that sustained ERK signalling is a requirement for S-phase entry, whereas transient ERK signalling does not have this capability. A major unanswered question, however, is how a cell can sustain ERK activation, particularly when ERK-specific phosphatases are transcriptionally up-regulated by the pathway itself. A major point of ERK regulation is at the level of Raf, and, to sustain ERK activation in the presence of ERK phosphatases, sustained Raf activation is a requirement. Three Raf proteins exist in mammals, and the activity of all three is induced following growth factor stimulation of cells, but only B-Raf activity is maintained at later time points. This observation points to B-Raf as a regulator of sustained ERK activation. In the present review, we consider evidence for a link between B-Raf and sustained ERK activation, focusing on a potential role for the subcellular localization of B-Raf in this key physiological event.


Sign in / Sign up

Export Citation Format

Share Document