scholarly journals The origins of binding specificity of a lanthanide ion binding peptide

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Takaaki Hatanaka ◽  
Nobuaki Kikkawa ◽  
Akimasa Matsugami ◽  
Yoichi Hosokawa ◽  
Fumiaki Hayashi ◽  
...  

Abstract Lanthanide ions (Ln3+) show similar physicochemical properties in aqueous solutions, wherein they exist as + 3 cations and exhibit ionic radii differences of less than 0.26 Å. A flexible linear peptide lanthanide binding tag (LBT), which recognizes a series of 15 Ln3+, shows an interesting characteristic in binding specificity, i.e., binding affinity biphasically changes with an increase in the atomic number, and shows a greater than 60-fold affinity difference between the highest and lowest values. Herein, by combining experimental and computational investigations, we gain deep insight into the reaction mechanism underlying the specificity of LBT3, an LBT mutant, toward Ln3+. Our results clearly show that LBT3-Ln3+ binding can be divided into three, and the large affinity difference is based on the ability of Ln3+ in a complex to be directly coordinated with a water molecule. When the LBT3 recognizes a Ln3+ with a larger ionic radius (La3+ to  Sm3+), a water molecule can interact with Ln3+ directly. This extra water molecule infiltrates the complex and induces dissociation of the Asn5 sidechain (one of the coordinates) from Ln3+, resulting in a destabilizing complex and low affinity. Conversely, with recognition of smaller Ln3+ (Sm3+ to Yb3+), the LBT3 completely surrounds the ions and constructs a stable high affinity complex. Moreover, when the LBT3 recognizes the smallest Ln3+, namely Lu3+, although it completely surrounds Lu3+, an entropically unfavorable phenomenon specifically occurs, resulting in lower affinity than that of Yb3+. Our findings will be useful for the design of molecules that enable the distinction of sub-angstrom size differences.

1981 ◽  
Vol 195 (3) ◽  
pp. 677-684 ◽  
Author(s):  
Christopher H. Evans

Tervalent cations of the lanthanide (rare-earth) elements reversibly inhibit bacterial collagenase (clostridiopeptidase A; EC 3.4.24.3). Sm3+, whose ionic radius is closest to that of Ca2+, is the most effective inhibitor, completely suppressing clostridiopeptidase activity at a concentration of 100μm in the presence of 5mm-Ca2+. Er3+ and Lu3+, which both have ionic radii smaller than either Ca2+ or Sm3+, inhibit less efficiently, and La3+, which is slightly larger than Ca2+ or Sm3+, inhibits only weakly. These findings indicate a closely fitting, stereospecific, Ca2+-binding pocket in clostridiopeptidase, which excludes ions that are only slightly larger than Ca2+ [ionic radius 0.099nm (0.99 Ȧ)]. By contrast, trypsin, an enzyme whose activity does not depend on Ca2+, requires lanthanide concentrations 50–100-fold greater for inhibition. Furthermore, the relative efficiency of inhibition of trypsin by lanthanides increases as the lanthanide ions become smaller and the charge/volume ratio increases. At a concentration of 50μm, Sm3+ lowers the apparent Km for the hydrolysis of Pz-peptide by clostridiopeptidase from 5.4mm to 0.37mm and the apparent Vmax. from 0.29 Wünsch–Heidrich unit to 0.018 unit. Thus Sm3+ enhances the affinity of this enzyme for its substrate; inhibition of hydrolysis of Pz-peptide may result from the excessive stability of the enzyme–Sm3+–substrate complex. Inhibition by Sm3+ is competitive with regard to Ca2+. The apparent dissociation constant, Kd, of Ca2+ is 0.27mm, where the Ki for Sm3+ is 12μm. Clostridiopeptidase is more thermolabile in the absence of Ca2+. With Sm3+, thermoinactivation of the enzyme at 53°C or 60°C is initially accelerated, but then becomes retarded as heating continues. Lanthanide ions bind to gelatin and collagen. In so doing, they appear to protect these substrates from lysis by clostridiopeptidase through mechanisms additional to supplanting Ca2+ at its binding site on the enzyme. Collagen and gelatin sequester sufficient lanthanide ions to gain partial protection from clostridiopeptidase in the absence of an extraneous source of these inhibitors.


1985 ◽  
Vol 227 (3) ◽  
pp. 711-717 ◽  
Author(s):  
T Drakenberg ◽  
M Swärd ◽  
A Cavé ◽  
J Parello

113Cd-n.m.r. studies were used to investigate the binding of the lanthanide ions La3+, Gd3+, Tb3+, Yb3+ and Lu3+ to parvalbumins. It was shown that lanthanide ions with a smaller ionic radius bind sequentially to Cd2+-saturated parvalbumin, whereas those with a larger ionic radius bind with similar affinity to both the CD site and the EF site. The smallest ion, Lu3+, does in fact not compete significantly with Cd2+ for the CD site in carp parvalbumin, but appears to bind only to the EF site. This preference of the smaller lanthanide ions for the EF site was used to assign the n.m.r. signals for protein-bound 113Cd. By using Cd n.m.r. and Tb3+ fluorescence it was also shown for alpha-lineage parvalbumin from pike that these proteins possess a third site that can bind lanthanide ions. This site is, however, much weaker than in the beta-lineage parvalbumins. It was used to assign the 113Cd resonances from protein-bound Cd2+ ions in the spectrum of pike pI5.0 parvalbumin.


2016 ◽  
Vol 31 (1) ◽  
pp. 23-30
Author(s):  
A. Pentón-Madrigal ◽  
Y. Mendez-González ◽  
A. Peláiz-Barranco ◽  
F. Calderón-Piñar ◽  
L. A. S. de Oliveira ◽  
...  

Pb0.88Ln0.08TiO3ferroelectric system, whereLn= La, Sm, Eu, and Dy, has been characterized using Scanning Electron Microscopy, Raman spectroscopy, and X-ray diffraction experiments. Softening of the lowest transverse optical phonon modeE(1TO) was evaluated as a function of the rare earths’ ionic radius suggesting partial occupation of lanthanide ions at theAandBsites of the perovskite structure. Using Rietveld refinements, it has been established a higher incorporation of Ln3+ions into theAsites of the perovskite structure than that of theBsites for the studied ceramics. The occupation atBsites increases slightly with the decreases of the ionic radii of the lanthanides.


Author(s):  
Kyle Fulle ◽  
Liurukara D. Sanjeewa ◽  
Colin D. McMillen ◽  
Joseph W. Kolis

Structural variations across a series of barium rare earth (RE) tetrasilicates are studied. Two different formulas are observed, namely those of a new cyclo-silicate fluoride, BaRE2Si4O12F2(RE = Er3+–Lu3+) and new compounds in the Ba2RE2Si4O13(RE = La3+–Ho3+) family, covering the whole range of ionic radii for the rare earth ions. The Ba2RE2Si4O13series is further subdivided into two polymorphs, also showing a dependence on rare earth ionic radius (space group P{\overline 1} for La3+–Nd3+, and space groupC2/cfor Sm3+–Ho3+). Two of the structure types identified are based on dinuclear rare earth units that differ in their crystal chemistries, particularly with respect to the role of fluorine as a structural director. The broad study of rare earth ions provides greater insight into understanding structural variations within silicate frameworks and the nature off-block incorporation in oxyanion frameworks. The single crystals are grown from high-temperature (ca953 K) hydrothermal fluids, demonstrating the versatility of the technique to access new phases containing recalcitrant rare earth oxides, enabling the study of structural trends.


Nature ◽  
2020 ◽  
Vol 581 (7809) ◽  
pp. 385-386
Author(s):  
Deanna M. Church
Keyword(s):  

2018 ◽  
Author(s):  
Tsair-Wei Chien ◽  
Hsien-Yi Wang ◽  
Yang Shao ◽  
Willy Chou

BACKGROUND Researchers often spend a great deal of time and effort retrieving related journals for their studies and submissions. Authors often designate one article and then retrieve other articles that are related to the given one using PubMed’s service for finding cited-by or similar articles. However, to date, none present the association between cited-by and similar journals related to a given journal. Authors need one effective and efficient way to find related journals on the topic of mobile health research. OBJECTIVE This study aims (1) to show the related journals for a given journal by both cited-by and similarity criteria; (2) to present the association between cited-by and similarity journals related to a given journal; (3) to inspect the patterns of network density indices among clusters classified by social network analysis (SNA); (4) to investigate the feature of Kendall's coefficient(W) of concordance. METHODS We obtained 676 abstracts since 2013 from Medline based on the keywords of ("JMIR mHealth and uHealth"[Journal]) on June 30, 2018, and plotted the clusters of related journals on Google Maps by using MS Excel modules. The features of network density indices were examined. The Kendall coefficient (W) was used to assess the concordance of clusters across indices. RESULTS This study found that (1) the journals related to JMIR mHealth and uHealth are easily presented on dashboards; (2) a mild association(=0.14) exists between cited-by and similar journals related to JMIR mHealth and uHealth; (3) the median Impact Factor were 3.37 and 2.183 based on the representatives of top ten clusters grouped by the cited-by and similar journals, respectively; (4) all Kendall’s coefficients(i.e., 0.82, 0.89, 0.92, and 0.75) for the four sets of density centrality have a statistically significant concordance (p < 0.05). CONCLUSIONS SNA provides deep insight into the relationships of related journals to a given journal. The results of this research can provide readers with a knowledge and concept diagram to use with future submissions to a given journal in the subject category of Mobile Health Research. CLINICALTRIAL Not available


2004 ◽  
Vol 69 (4) ◽  
pp. 885-896 ◽  
Author(s):  
Luisa Stella Dolci ◽  
Péter Huszthy ◽  
Erika Samu ◽  
Marco Montalti ◽  
Luca Prodi ◽  
...  

Enantiomerically pure dimethyl- and diisobutyl-substituted phenazino-18-crown-6 ligands bind metal and ammonium ions and also primary aralkylammonium perchlorates in acetonitrile with high affinity, causing pronounced changes in their luminescence properties. In addition, they show enantioselectivity towards chiral primary aralkylammonium perchlorates. The possibility to monitor the binding process by photoluminescence spectroscopy can gain ground for the design of very efficient enantioselective chemosensors for chiral species. The observed changes in the photophysical properties are also an important tool for understanding the interactions present in the adduct.


Author(s):  
Hongnan Wu ◽  
Yajing Sun ◽  
Lingjie Sun ◽  
Liwei Wang ◽  
Xiaotao Zhang ◽  
...  

Author(s):  
Xiaojuan Tian ◽  
Yueting Zhou ◽  
Lihua Wang ◽  
Shenghu Ding

AbstractThe contact problem for thermoelectric materials with functionally graded properties is considered. The material properties, such as the electric conductivity, the thermal conductivity, the shear modulus, and the thermal expansion coefficient, vary in an exponential function. Using the Fourier transform technique, the electro-thermo-elastic problems are transformed into three sets of singular integral equations which are solved numerically in terms of the unknown normal electric current density, the normal energy flux, and the contact pressure. Meanwhile, the complex homogeneous solutions of the displacement fields caused by the gradient parameters are simplified with the help of Euler’s formula. After addressing the non-linearity excited by thermoelectric effects, the particular solutions of the displacement fields can be assessed. The effects of various combinations of material gradient parameters and thermoelectric loads on the contact behaviors of thermoelectric materials are presented. The results give a deep insight into the contact damage mechanism of functionally graded thermoelectric materials (FGTEMs).


Sign in / Sign up

Export Citation Format

Share Document