scholarly journals Molecular mapping of a new recessive wheat leaf rust resistance gene originating from Triticum spelta

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Vishal Dinkar ◽  
S. K. Jha ◽  
Niharika Mallick ◽  
M. Niranjana ◽  
Priyanka Agarwal ◽  
...  

AbstractTSD276-2, a wheat genetic stock derived from the cross Agra Local/T. spelta 276 showed broad spectrum resistance against leaf rust pathogen. Genetic analysis was undertaken using F1, F2, F2:3 and BC1F1 generations derived from the cross TSD276-2/Agra Local. The results revealed a single recessive gene for leaf rust resistance, tentatively named as LrTs276-2, in TSD276-2. Molecular mapping of leaf rust resistance gene LrTs276-2 in TSD276-2 was done using SNP-based PCR and SSR markers. For Bulked Segregant Analysis (BSA), two bulks viz. resistant bulk and susceptible bulk, and the parents TSD276-2 and Agra Local were genotyped for SNPs using AFFYMETRIX 35K Wheat Breeders' AXIOM array. T. spelta 276 was also genotyped and used as a check. BSA indicated that the gene for leaf rust resistance in TSD276-2 is located on chromosome arm 1DS. Putatively linked SNPs on chromosome arm 1DS were converted into PCR-based markers. Polymorphic SSR markers on chromosome arm 1DS were also identified. Final linkage map was constructed using one SNP-based PCR and three SSR markers. The rust reaction and chromosomal location suggest that LrTs276-2 is a new leaf rust resistance gene which may be useful in broadening the genetic base of leaf rust resistance in wheat.

Crop Science ◽  
2003 ◽  
Vol 43 (1) ◽  
pp. 388 ◽  
Author(s):  
J. A. Mammadov ◽  
J. C. Zwonitzer ◽  
R. M. Biyashev ◽  
C. A. Griffey ◽  
Y. Jin ◽  
...  

Euphytica ◽  
2015 ◽  
Vol 206 (1) ◽  
pp. 57-66
Author(s):  
Ai-yong Qi ◽  
Pei-pei Zhang ◽  
Xian-chun Xia ◽  
Zhong-hu He ◽  
Julio Huerta-Espino ◽  
...  

2020 ◽  
Author(s):  
Xiangyang Xu ◽  
Genqiao Li ◽  
Guihua Bai ◽  
Amy Bernardo ◽  
Brett F Carver ◽  
...  

Leaf rust, caused by Puccininia triticina (Pt), is one of the most common wheat diseases in the Great Plains of the USA. A population of recombinant inbred lines (RILs) from CI 17884 x Bainong 418 was evaluated for responses to leaf rust race Pt52-2 and genotyped using single nucleotide polymorphism (SNP) markers. Quantitative trait locus (QTL) analysis identified a minor gene for resistance to leaf rust, designated QLr.stars-1RS, on the 1BL.1RS translocation segment in Bainong 418, and another leaf rust resistance gene, Lr47, on chromosome 7A of CI 17884. Lr47, originally identified in CI 17884 and located in a wheat-T. speltoides translocation segment 7S#1S, remains one of only a few race-specific resistance genes still effective in the Great Plains. A set of 7A-specific simple sequence repeat (SSR) markers were developed and used to genotype CI 17884 and a pair of near-isogenic lines differing in the presence or absence of 7S#1S, PI 603918 and Pavon F76. Haplotype analysis indicated that the estimated length of 7S#1S was 157.23 to 174.42 Mb, accounting for about 23% of the 7A chromosome. Two SNPs on 7S#1S and 4 SNPs on the 1RS chromosome arm were converted to KASP markers, which were subsequently validated in a panel of cultivars and recently released elite breeding lines. Of these, one and two KASP markers are specific to the 1RS chromosome arm and 7S#1S, respectively, indicating that they can facilitate the introgression of Lr47 and QLr.stars-1BS into locally adapted wheat cultivars and breeding lines.


2020 ◽  
Vol 133 (9) ◽  
pp. 2685-2694 ◽  
Author(s):  
K. Rani ◽  
B. R. Raghu ◽  
S. K. Jha ◽  
Priyanka Agarwal ◽  
Niharika Mallick ◽  
...  

Plant Disease ◽  
2008 ◽  
Vol 92 (3) ◽  
pp. 469-473 ◽  
Author(s):  
S. A. Herrera-Foessel ◽  
R. P. Singh ◽  
J. Huerta-Espino ◽  
H. M. William ◽  
V. Garcia ◽  
...  

Leaf rust, caused by Puccinia triticina, is an important disease of durum wheat (Triticum turgidum subsp. durum) and only a few designated resistance genes are known to occur in this crop. A dominant leaf rust resistance gene in the Chilean durum cv. Llareta INIA was mapped to chromosome arm 7BL through bulked segregant analysis using the amplified fragment length polymorphism (AFLP) technique, and by mapping three polymorphic markers in the common wheat (T. aestivum) International Triticeae Mapping Initiative population. Several simple sequence repeat (SSR) markers, including Xgwm344-7B and Xgwm146-7B, were associated with the leaf rust resistance gene. Resistance response and chromosomal position indicated that this gene is likely to be Lr14a. The SSR markers Xgwm344-7B and Xgwm146-7B and one AFLP marker also differentiated common wheat cv. Thatcher from the near-isogenic line with Lr14a, as well as durum ‘Altar C84’ from durum wheat with Lr14a. This is the first report of the presence of Lr14a in durum wheat, although the gene originally was transferred from emmer wheat ‘Yaroslav’ to common wheat. Lr14a is also present in CIMMYT-derived durum ‘Somateria’ and effective against Mexican and other P. triticina races of durum origin. Lr14a should be deployed in combination with other effective leaf rust resistance genes to prolong its effectiveness in durum wheat.


2014 ◽  
Vol 50 (No. 4) ◽  
pp. 262-267 ◽  
Author(s):  
J. Wang ◽  
L. Shi ◽  
L. Zhu ◽  
X. Li ◽  
D. Liu

The wheat (Triticum aestivum L.) line 5R618, bred at the China Agricultural University, is resistant in the seedling stage to the majority of the current Chinese pathotypes of wheat leaf rust (Puccinia triticina). To identify and map the leaf rust resistance gene in the 5R618 line, F<sub>2</sub> plants and F<sub>2:3</sub> families from a cross between 5R618 and Zhengzhou5389 (susceptible) were inoculated in the greenhouse with the Chinese P. triticina pathotype THJP. Results from the F<sub>2</sub> and F<sub>2:3</sub> populations indicate that a single dominant gene, temporarily designated&nbsp;Lr5R, conferred resistance. Using the molecular marker method, Lr5R was located on the 3DL chromosome. It was closely linked to the markers Xbarc71 and OPJ-09 with genetic distances of 0.9 cM and 1.0 cM, respectively. At present only one designated gene (Lr24) is located on the 3DL chromosome. The genetic distance between Lr5R&nbsp;and Lr24 confirms that Lr5R is a new leaf rust resistance gene.


Crop Science ◽  
2003 ◽  
Vol 43 (1) ◽  
pp. 388 ◽  
Author(s):  
J. A. Mammadov ◽  
J. C. Zwonitzer ◽  
R. M. Biyashev ◽  
C. A. Griffey ◽  
Y. Jin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document