scholarly journals Generation of westerly wind bursts by forcing outside the tropics

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Arnold Sullivan ◽  
Wenxiu Zhong ◽  
Gian Luca Eusebi Borzelli ◽  
Tao Geng ◽  
Chloe Mackallah ◽  
...  

AbstractThe westerly wind burst (WWB) is an important triggering mechanism of El Niño and typically occurs in the western Pacific Ocean. The Fourier spectrum of the wind field over the western tropical Pacific is characterised by a large variety of peaks distributed from intra-seasonal to decadal time scales, suggesting that WWBs could be a result of nonlinear interactions on these time scales. Using a combination of observations and simulations with 15 coupled models from the Coupled Model Intercomparison Project Phase 6 (CMIP6), we demonstrate that the main drivers initiating WWBs are quantifiable physical processes rather than atmospheric stochastic signals. In this study, ensemble empirical mode decomposition (EEMD) from the Holo-Hilbert spectral analysis (HHSA) is used to decompose daily zonal winds over the western equatorial Pacific into seasonal, interannual and decadal components. The seasonal element, with prominent spectral peaks of less than 12 months, is not ENSO related, and we find it to be strongly associated with the East Asian monsoon (EAM) and cross-equatorial flow (CEF) over the Australian monsoon region. The CEF is directly related to the intensity of the Australian subtropical ridge (STR-I). Both the EAM and CEF are essential sources of these high-frequency winds over the western Pacific. In contrast, the interannual wind component is closely related to El Niño occurrences and usually peaks approximately two months prior to a typical El Niño event. Finally, the decadal element merely represents a long-term trend and thus has little to no relation to El Niño. We identified EAM- and CEF-induced westerly wind anomalies in December–January–February (DJF) and September–October–November (SON). However, these anomalies fade in March–April–May (MAM), potentially undermining the usual absence of WWBs in the boreal spring. Similar results are found in CMIP6 historical scenario data.

2006 ◽  
Vol 19 (24) ◽  
pp. 6371-6381 ◽  
Author(s):  
Jong-Seong Kug ◽  
Ben P. Kirtman ◽  
In-Sik Kang

Abstract An interactive feedback between ENSO and the Indian Ocean is investigated using a Center for Ocean–Land–Atmosphere Studies (COLA) interactive ensemble coupled model. From a long-term simulation of the coupled GCM, it is shown that El Niño events terminate relatively rapidly when the Indian Ocean SST is anomalously warm. The anomalous Indian Ocean warming induces the anomalous easterlies over the western Pacific by modulating the Walker circulation. In turn, the anomalous easterlies generate oceanic-upwelling Kelvin waves over the western Pacific, which propagate eastward and accelerate the decay of the warm SST in the eastern Pacific. As a result, El Niño terminates relatively quickly, and the phase transition from El Niño to La Niña progresses rapidly. These interactive processes are consistent with those derived from the previous observational analyses.


2005 ◽  
Vol 18 (2) ◽  
pp. 274-286 ◽  
Author(s):  
Amy Solomon ◽  
Fei-Fei Jin

Abstract Concurrent with most large El Niño events, cold sea surface temperature (SST) anomalies are observed over the western Pacific warm pool region (WPWP). Observational evidence that SST anomalies that form in the off-equatorial western Pacific during El Niño–Southern Oscillation (ENSO) cycles are forced by subsurface ocean processes equatorward of 12°N and air–sea fluxes poleward of 12°N is presented. It is demonstrated that diurnal mixing in the ocean equatorward of 12°N plays a significant role in bringing subsurface temperature anomalies to the sea surface during an El Niño event. The role of SST anomalies equatorward of 12°N in ENSO cycles is tested in the Zebiak–Cane coupled model, modified to allow for the impact of subsurface temperatures on SSTs. This coupled model successfully simulates cold SST anomalies in the off-equatorial northwestern Pacific that are observed to occur during the warm phase of ENSO and the atmospheric response to these anomalies, which is composed of both westerlies in the central Pacific and easterlies in the far western equatorial Pacific. It is found that there is little net change in the zonal mean wind stress at the equator, suggesting that the westerlies cancel the impact of the easterlies on the basin-scale tilt of the equatorial zonal mean thermocline depth. The anomalous westerly winds in the central equatorial Pacific are found to increase the amplitude of an El Niño event directly by increasing anomalous warm zonal advection and reducing upwelling. Moreover, the off-equatorial anticyclonic wind stress associated with the cold SST anomalies during the warm phase of ENSO tends to reduce the discharge of the equatorial heat content. Thus, the coupled processes over the western Pacific warm pool can serve as a positive feedback to amplify ENSO cycles.


2015 ◽  
Vol 28 (19) ◽  
pp. 7561-7575 ◽  
Author(s):  
Yoo-Geun Ham ◽  
Yerim Jeong ◽  
Jong-Seong Kug

Abstract This study uses archives from phase 5 of the Coupled Model Intercomparison Project (CMIP5) to investigate changes in independency between two types of El Niño events caused by greenhouse warming. In the observations, the independency between cold tongue (CT) and warm pool (WP) El Niño events is distinctively increased in recent decades. The simulated changes in independency between the two types of El Niño events according to the CMIP5 models are quite diverse, although the observed features are simulated to some extent in several climate models. It is found that the climatological change after global warming is an essential factor in determining the changes in independency between the two types of El Niño events. For example, the independency between these events is increased after global warming when the climatological precipitation is increased mainly over the equatorial central Pacific. This climatological precipitation increase extends convective response to the east, particularly for CT El Niño events, which leads to greater differences in the spatial pattern between the two types of El Niño events to increase the El Niño independency. On the contrary, in models with decreased independency between the two types of El Niño events after global warming, climatological precipitation is increased mostly over the western Pacific. This confines the atmospheric response to the western Pacific in both El Niño events; therefore, the similarity between them is increased after global warming. In addition to the changes in the climatological state after global warming, a possible connection of the changes in the El Niño independency with the historical mean state is discussed in this paper.


2021 ◽  
pp. 1-38
Author(s):  
Tao Lian ◽  
Dake Chen

AbstractWhile both intrinsic low-frequency atmosphere–ocean interaction and multiplicative burst-like event affect the development of the El Niño–Southern Oscillation (ENSO), the strong nonlinearity in ENSO dynamics has prevented us from separating their relative contributions. Here we propose an online filtering scheme to estimate the role of the westerly wind bursts (WWBs), a type of aperiodic burst-like atmospheric perturbation over the western-central tropical Pacific, in the genesis of the centennial extreme 1997/98 El Niño using the CESM coupled model. This scheme highlights the deterministic part of ENSO dynamics during model integration, and clearly demonstrates that the strong and long-lasting WWB in March 1997 was essential for generating the 1997/98 El Niño. Without this WWB, the intrinsic low-frequency coupling would have only produced a weak warm event in late 1997 similar to the 2014/15 El Niño.


2018 ◽  
Vol 246 ◽  
pp. 01074
Author(s):  
Zujian Zou ◽  
Yubin He

The Dadu River Basin is located in the transitional zone between the Qinghai-Tibet Plateau and the Sichuan Basin. It is alternately affected by various weather systems such as the western Pacific subtropical high, the Qinghai-Tibet high (anti-cyclone), the southwest warm and humid air current, and the southeast monsoon. The western Pacific subtropical high is one of the main influencing factors of rainfall runoff in the basin. During the El Niño period, the western Pacific subtropical high moved eastward and the position was southward. The warm and humid airflow and the southeast monsoon northward changed, and the rainfall runoff in the Dadu River Basin changed.By analyzing the development of the El Niño phenomenon, Divide an El Niño process into different stages of occurrence, development, and end. Combining the characteristics of the Dadu River runoff in each stage, Studying the runoff situation of the Dadu River Basin under different strengths and weaknesses of the El Niño phenomenon. Using the correlation method to establish a model of the relationship between the abundance of the Dadu River Basin and the El Niño strength and weakness. Providing new ideas and new methods for the accurate prediction of the incoming water of the Dadu River under the abnormal climatic conditions of El Niño. It provides technical support for reservoir dispatching, flood control dispatching and economic dispatching of cascade hydropower stations, and provides experience for other river basins to cope with complex climate situations and improve water regime forecasting levels.


2019 ◽  
Vol 46 (2) ◽  
pp. 953-962 ◽  
Author(s):  
Mengyan Chen ◽  
Jin‐Yi Yu ◽  
Xin Wang ◽  
Wenping Jiang

2005 ◽  
Vol 133 (5) ◽  
pp. 1343-1352 ◽  
Author(s):  
Jong-Seong Kug ◽  
In-Sik Kang ◽  
Jong-Ghap Jhun

Abstract To improve forecasting skills in the western Pacific sea surface temperature (SST), the authors utilized and modified an intermediate El Niño prediction model. The original model does not have the major SST thermodynamics for western Pacific SST variability, so it cannot simulate interannual variation in the western Pacific correctly. Therefore, the authors have introduced some modifications, such as heat flux and vertical mixing, into the dynamical model in order to capture SST thermodynamics more realistically. The modified model has better forecast skill than the original one, not only for the western Pacific but also for the eastern-central Pacific. The model has predictive skill up to 6-months lead time as judged by a correlation exceeding 0.5.


2016 ◽  
Vol 29 (5) ◽  
pp. 1919-1934 ◽  
Author(s):  
Xiong Chen ◽  
Jian Ling ◽  
Chongyin Li

Abstract Evolution characteristics of the Madden–Julian oscillation (MJO) during the eastern Pacific (EP) and central Pacific (CP) types of El Niño have been investigated. MJO activities are strengthened over the western Pacific during the predeveloping and developing phases of EP El Niño, but suppressed during the mature and decaying phases. In contrast, MJO activities do not show a clear relationship with CP El Niño before their occurrence over the western Pacific, but they increase over the central Pacific during the mature and decaying phases of CP El Niño. Lag correlation analyses further confirm that MJO activities over the western Pacific in boreal spring and early summer are closely related to EP El Niño up to 2–11 months later, but not for CP El Niño. EP El Niño tends to weaken the MJO and lead to a much shorter range of its eastward propagation. Anomalous descending motions over the Maritime Continent and western Pacific related to El Niño can suppress convection and moisture flux convergence there and weaken MJO activities over these regions during the mature phase of both types of El Niño. MJO activities over the western Pacific are much weaker in EP El Niño due to the stronger anomalous descending motions. Furthermore, the MJO propagates more continuously and farther eastward during CP El Niño because of robust moisture convergence over the central Pacific, which provides adequate moisture for the development of MJO convection.


Sign in / Sign up

Export Citation Format

Share Document