scholarly journals The encapsulin from Thermotoga maritima is a flavoprotein with a symmetry matched ferritin-like cargo protein

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Benjamin J. LaFrance ◽  
Caleb Cassidy-Amstutz ◽  
Robert J. Nichols ◽  
Luke M. Oltrogge ◽  
Eva Nogales ◽  
...  

AbstractBacterial nanocompartments, also known as encapsulins, are an emerging class of protein-based ‘organelles’ found in bacteria and archaea. Encapsulins are virus-like icosahedral particles comprising a ~ 25–50 nm shell surrounding a specific cargo enzyme. Compartmentalization is thought to create a unique chemical environment to facilitate catalysis and isolate toxic intermediates. Many questions regarding nanocompartment structure–function remain unanswered, including how shell symmetry dictates cargo loading and to what extent the shell facilitates enzymatic activity. Here, we explore these questions using the model Thermotoga maritima nanocompartment known to encapsulate a redox-active ferritin-like protein. Biochemical analysis revealed the encapsulin shell to possess a flavin binding site located at the interface between capsomere subunits, suggesting the shell may play a direct and active role in the function of the encapsulated cargo. Furthermore, we used cryo-EM to show that cargo proteins use a form of symmetry-matching to facilitate encapsulation and define stoichiometry. In the case of the Thermotoga maritima encapsulin, the decameric cargo protein with fivefold symmetry preferentially binds to the pentameric-axis of the icosahedral shell. Taken together, these observations suggest the shell is not simply a passive barrier—it also plays a significant role in the structure and function of the cargo enzyme.

2021 ◽  
Author(s):  
Benjamin J LaFrance ◽  
Caleb Cassidy-Amstutz ◽  
Robert J Nichols ◽  
Luke M Oltrogge ◽  
Eva Nogales ◽  
...  

Bacterial nanocompartments, also known as encapsulins, are an emerging class of protein-based "organelles" found in bacteria and archaea. Encapsulins are virus-like icosahedral particles comprising a ~25-50 nm shell surrounding a specific cargo enzyme. Compartmentalization is thought to create a unique chemical environment to facilitate catalysis and isolate toxic intermediates. Many questions regarding nanocompartment structure-function remain unanswered, including how shell symmetry dictates cargo loading and to what extent the shell facilitates enzymatic activity. Here, we explore these questions using the model T. maritima nanocompartment known to encapsulate a redox-active ferritin-like protein. Biochemical analysis revealed the encapsulin shell to possess a flavin binding site located at the interface between capsomere subunits, suggesting the shell may play a direct and active role in the function of the encapsulated cargo. Furthermore, we used cryoEM to show that cargo proteins use a form of symmetry-matching to facilitate encapsulation and define stoichiometry. In the case of the T. maritima encapsulin, the decameric cargo protein with 5-fold symmetry preferentially binds to the pentameric-axis of the icosahedral shell. Taken together, these observations suggest the shell is not simply a passive barrier-it also plays a significant role in the structure and function of the cargo enzyme.


2020 ◽  
Vol 24 (01n03) ◽  
pp. 21-32 ◽  
Author(s):  
Shunichi Fukuzumi ◽  
Yong-Min Lee ◽  
Wonwoo Nam

Metalloporphyrinoids are utilized as efficient sensitizers and catalysts in photosynthesis and the reverse reaction that is respiration. Because metalloporphyrinoids show strong absorption in the visible region and redox active, metalloporphyrinoids are also suited as photoredox catalysts for photo-driven redox reactions using solar energy. In particular, metalloporphyrins are utilized as pivotal components to mimic the structure and function of the photosynthetic reaction center. Metalloporphyrins are used as photoredox catalysts for hydrogen evolution from electron and proton sources combining hydrogen evolution catalysts. Metalloporphyrins also act as thermal redox catalysts for photocatalytic reduction of CO2 with photoredox catalysts. Metalloporphyrins are also used as dual catalysts for a photoredox catalyst for oxygenation of substrates with H2O and a redox catalyst for O2 reduction when dioxygen is used as a two-electron oxidant and H2O as an oxygen source, both of which are the greenest reactants. Free base porphyrins can also be employed as promising photoredox catalysts for C–C bond formation reactions.


Structure ◽  
2000 ◽  
Vol 8 (3) ◽  
pp. 265-276 ◽  
Author(s):  
Ralf Thoma ◽  
Michael Hennig ◽  
Reinhard Sterner ◽  
Kasper Kirschner

2005 ◽  
Vol 33 (6) ◽  
pp. 1487-1492 ◽  
Author(s):  
G.D. Pavitt

eIF2B (eukaryotic initiation factor 2B) is a multisubunit protein that is required for protein synthesis initiation and its regulation in all eukaryotic cells. Mutations in eIF2B have also recently been found to cause a fatal human disease called CACH (childhood ataxia with central nervous system hypomyelination) or VWM (vanishing white matter disease). This review provides a general background to translation initiation and mechanisms known to control eIF2B function, before describing molecular genetic and biochemical analysis of eIF2B structure and function, integrating work from studies of the yeast and mammalian eIF2B proteins.


2009 ◽  
Vol 37 (1) ◽  
pp. 108-113 ◽  
Author(s):  
Stuart A. MacNeill

The powerful combination of genetic and biochemical analysis has provided many key insights into the structure and function of the chromosomal DNA replication machineries of bacterial and eukaryotic cells. In contrast, in the archaea, biochemical studies have dominated, mainly due to the absence of efficient genetic systems for these organisms. This situation is changing, however, and, in this regard, the genetically tractable haloarchaea Haloferax volcanii and Halobacterium sp. NRC-1 are emerging as key models. In the present review, I give an overview of the components of the replication machinery in the haloarchaea, with particular emphasis on the protein factors presumed to travel with the replication fork.


Methods ◽  
1997 ◽  
Vol 12 (1) ◽  
pp. 28-35 ◽  
Author(s):  
Thiemo A. Blank ◽  
Raphael Sandaltzopoulos ◽  
Peter B. Becker

2011 ◽  
Vol 193 (6) ◽  
pp. 973-983 ◽  
Author(s):  
Wenjing Li ◽  
Tomohiro Miki ◽  
Takashi Watanabe ◽  
Mai Kakeno ◽  
Ikuko Sugiyama ◽  
...  

Highly conserved EB1 family proteins bind to the growing ends of microtubules, recruit multiple cargo proteins, and are critical for making dynamic microtubules in vivo. However, it is unclear how these master regulators of microtubule plus ends promote microtubule dynamics. In this paper, we identify a novel EB1 cargo protein, Sentin. Sentin depletion in Drosophila melanogaster S2 cells, similar to EB1 depletion, resulted in an increase in microtubule pausing and led to the formation of shorter spindles, without displacing EB1 from growing microtubules. We demonstrate that Sentin’s association with EB1 was critical for its plus end localization and function. Furthermore, the EB1 phenotype was rescued by expressing an EBN-Sentin fusion protein in which the C-terminal cargo-binding region of EB1 is replaced with Sentin. Knockdown of Sentin attenuated plus end accumulation of Msps (mini spindles), the orthologue of XMAP215 microtubule polymerase. These results indicate that EB1 promotes dynamic microtubule behavior by recruiting the cargo protein Sentin and possibly also a microtubule polymerase to the microtubule tip.


2016 ◽  
Vol 44 (3) ◽  
pp. 783-789 ◽  
Author(s):  
Alison Baker ◽  
Thomas Lanyon Hogg ◽  
Stuart L. Warriner

The import of proteins into peroxisomes possesses many unusual features such as the ability to import folded proteins, and a surprising diversity of targeting signals with differing affinities that can be recognized by the same receptor. As understanding of the structure and function of many components of the protein import machinery has grown, an increasingly complex network of factors affecting each step of the import pathway has emerged. Structural studies have revealed the presence of additional interactions between cargo proteins and the PEX5 receptor that affect import potential, with a subtle network of cargo-induced conformational changes in PEX5 being involved in the import process. Biochemical studies have also indicated an interdependence of receptor–cargo import with release of unloaded receptor from the peroxisome. Here, we provide an update on recent literature concerning mechanisms of protein import into peroxisomes.


2013 ◽  
Vol 452 (2) ◽  
pp. 367-368
Author(s):  
N. Nordin ◽  
A. Guskov ◽  
T. Phua ◽  
N. Sahaf ◽  
Y. Xia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document