scholarly journals Mild hyperthermia induced by gold nanorods acts as a dual-edge blade in the fate of SH-SY5Y cells via autophagy

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maryam Ghafarkhani ◽  
Cigir Biray Avci ◽  
Reza Rahbarghazi ◽  
Abbas Karimi ◽  
Majid Sadeghizadeh ◽  
...  

AbstractUnraveling unwanted side effects of nanotechnology-based therapies like photothermal therapy (PTT) is vital in translational nanomedicine. Herein, we monitored the relationship between autophagic response at the transcriptional level by using a PCR array and tumor formation ability by colony formation assay in the human neuroblastoma cell line, SH-SY5Y, 48 h after being exposed to two different mild hyperthermia (43 and 48 °C) induced by PTT. In this regard, the promotion of apoptosis and autophagy were evaluated using immunofluorescence imaging and flow cytometry analyses. Protein levels of Ki-67, P62, and LC3 were measured using ELISA. Our results showed that of 86 genes associated with autophagy, the expression of 54 genes was changed in response to PTT. Also, we showed that chaperone-mediated autophagy (CMA) and macroautophagy are stimulated in PTT. Importantly, the results of this study also showed significant changes in genes related to the crosstalk between autophagy, dormancy, and metastatic activity of treated cells. Our findings illustrated that PTT enhances the aggressiveness of cancer cells at 43 °C, in contrast to 48 °C by the regulation of autophagy-dependent manner.

1994 ◽  
Vol 14 (10) ◽  
pp. 6584-6596
Author(s):  
G Melino ◽  
M Annicchiarico-Petruzzelli ◽  
L Piredda ◽  
E Candi ◽  
V Gentile ◽  
...  

In this report, we show that the overexpression of tissue transglutaminase (tTG) in the human neuroblastoma cell line SK-N-BE(2) renders these neural crest-derived cells highly susceptible to death by apoptosis. Cells transfected with a full-length tTG cDNA, under the control of a constitutive promoter, show a drastic reduction in proliferative capacity paralleled by a large increase in cell death rate. The dying tTG-transfected cells exhibit both cytoplasmic and nuclear changes characteristic of cells undergoing apoptosis. The tTG-transfected cells express high Bcl-2 protein levels as well as phenotypic neural cell adhesion molecule markers (NCAM and neurofilaments) of cells differentiating along the neuronal pathway. In keeping with these findings, transfection of neuroblastoma cells with an expression vector containing segments of the human tTG cDNA in antisense orientation resulted in a pronounced decrease of both spontaneous and retinoic acid (RA)-induced apoptosis. We also present evidence that (i) the apoptotic program of these neuroectodermal cells is strictly regulated by RA and (ii) cell death by apoptosis in the human neuroblastoma SK-N-BE(2) cells preferentially occurs in the substrate-adherent phenotype. For the first time, we report here a direct effect of tTG in the phenotypic maturation toward apoptosis. These results indicate that the tTG-dependent irreversible cross-linking of intracellular protein represents an important biochemical event in the induction of the structural changes featuring cells dying by apoptosis.


1994 ◽  
Vol 14 (10) ◽  
pp. 6584-6596 ◽  
Author(s):  
G Melino ◽  
M Annicchiarico-Petruzzelli ◽  
L Piredda ◽  
E Candi ◽  
V Gentile ◽  
...  

In this report, we show that the overexpression of tissue transglutaminase (tTG) in the human neuroblastoma cell line SK-N-BE(2) renders these neural crest-derived cells highly susceptible to death by apoptosis. Cells transfected with a full-length tTG cDNA, under the control of a constitutive promoter, show a drastic reduction in proliferative capacity paralleled by a large increase in cell death rate. The dying tTG-transfected cells exhibit both cytoplasmic and nuclear changes characteristic of cells undergoing apoptosis. The tTG-transfected cells express high Bcl-2 protein levels as well as phenotypic neural cell adhesion molecule markers (NCAM and neurofilaments) of cells differentiating along the neuronal pathway. In keeping with these findings, transfection of neuroblastoma cells with an expression vector containing segments of the human tTG cDNA in antisense orientation resulted in a pronounced decrease of both spontaneous and retinoic acid (RA)-induced apoptosis. We also present evidence that (i) the apoptotic program of these neuroectodermal cells is strictly regulated by RA and (ii) cell death by apoptosis in the human neuroblastoma SK-N-BE(2) cells preferentially occurs in the substrate-adherent phenotype. For the first time, we report here a direct effect of tTG in the phenotypic maturation toward apoptosis. These results indicate that the tTG-dependent irreversible cross-linking of intracellular protein represents an important biochemical event in the induction of the structural changes featuring cells dying by apoptosis.


1995 ◽  
Vol 74 (4) ◽  
pp. 1730-1741 ◽  
Author(s):  
M. Toselli ◽  
P. Perin ◽  
V. Taglietti

1. Calcium channel modulation by muscarine was investigated in cultured human neuroblastoma SH-SY5Y cells using the whole cell variant of the patch-clamp technique. 2. In SH-SY5Y cells, omega-conotoxin (omega-CgTx)-sensitive, high-voltage-activated Ca2+ current density gradually increased from approximately 1 microA/cm2 in undifferentiated cells to 4 microA/cm2 after approximately 20 days of application of the differentiating agent retinoic acid. 3. In differentiated SH-SY5Y cells, muscarine reversibly decreased high-voltage-activated omega-CgTx-sensitive Ba2+ currents in a concentration-dependent way. Maximum inhibition (approximately 65%) measured at 0 mV was obtained with 30 microM muscarine and the IC50 was 1 microM. 4. Current inhibition obtained with 30 microM muscarine was suppressed by the specific M2 and M3 antagonists AFDX-116 and 4-diphenylacetoxy-N-methyl-piperidine methiodide (0.3 microM; 87% suppression), but not by the M1 antagonist pirenzepine. 5. Muscarine-induced current suppression was prevented by pretreatment of the cells with pertussis toxin and mimicked by intracellular application of guanosine 5'-[gamma-thio]triphosphate. 6. In several cells, muscarinic inhibition was characterized by a clear slowdown of Ba2+ current activation at low test potentials. Both inhibition and slowdown of activation were attenuated at more positive potentials and could be partially relieved by strong conditioning depolarizations. 7. These results indicate that muscarinic inhibition of omega-CgTx-sensitive Ca2+ channel current occurs through activation of specific muscarinic receptors and the modulatory mechanism operates through activation of a guanosine 5'-triphosphate-binding protein sensitive to pertussis toxin. Our results suggest that a blocking molecule interacts in a voltage-dependent manner with the Ca2+ channel without involvement of intracellular Ca2+ mobilization or activation of protein kinase C or cyclic nucleotide protein kinases. A simple model describing the reactions involved is proposed.


2020 ◽  
Vol 9 (4) ◽  
pp. 467-473
Author(s):  
Zhong Wang ◽  
Qin Liu ◽  
Jun Lu ◽  
Jian Cao ◽  
Xiao-Yan Wang ◽  
...  

Abstract Lidocaine is one of the most common local anesthetics (LA) used in clinical practice and it is neurotoxic. Recent studies suggested that LA, including lidocaine, could exert protective effect over neurotoxicity by promoting autophagy. However, the underlying mechanism was not sufficiently elucidated. This study aimed to explore the mechanism behind. Human neuroblastoma cell line SH-SY5Y was used throughout the whole study. The effect of lidocaine on viability, toxicity of SH-SY5Y cells were analyzed by MTT and lactate dehydrogenase (LDH) assays, respectively. The relative expression of miR-145 was assessed by quantitative reverse transcription-polymerase chain reaction. The impact which lidocaine brought on PI3K/AKT/mTOR pathway and autophagy-related proteins were examined by the western blot assay. LC3B was assessed by immunofluorescence staining. The interaction between miR-145 and AKT3 was conducted by the dual-luciferase reporting assay. Lidocaine inhibited viability of SH-SY5Y cells in a time and dose dependent manner and enhanced the release of LDH in SH-SY5Y cells. Furthermore, the expression of miR-145 and autophagy were enhanced by lidocaine. Transfection with miR-145 inhibitor inhibited the release of LDH and autophagy. miR-145 targeted AKT3 to inhibit PI3K/AKT/mTOR pathway. Finally, lidocaine inactivated PI3K/AKT/mTOR pathways via upregulation of miR-145, and it subsequently promoted autophagy of SH-SY5Y cells. However, silence of miR-145 could reverse the promotion of the autophagy of SH-SY5Y cells. Our results showed that lidocaine promoted autophagy of nerve cells via regulating miR-145 expression and further inactivation of PI3K/AKT/mTOR signaling pathway.


2021 ◽  
Vol 14 (8) ◽  
pp. 750
Author(s):  
Zahira Tber ◽  
Mohammed Loubidi ◽  
Jabrane Jouha ◽  
Ismail Hdoufane ◽  
Mümin Alper Erdogan ◽  
...  

We report herein the evaluation of various pyrido[2′,1′:2,3]imidazo[4,5-c]isoquinolin-5-amines as potential cytotoxic agents. These molecules were obtained by developing the multicomponent Groebke–Blackburn–Bienaymé reaction to yield various pyrido[2′,1′:2,3]imidazo[4,5-c]quinolines which are isosteres of ellipticine whose biological activities are well established. To evaluate the anticancer potential of these pyrido[2′,1′:2,3]imidazo[4,5-c]isoquinolin-5-amine derivatives in the human neuroblastoma cell line, the cytotoxicity was examined using the WST-1 assay after 72 h drug exposure. A clonogenic assay was used to assess the ability of treated cells to proliferate and form colonies. Protein expressions (Bax, bcl-2, cleaved caspase-3, cleaved PARP-1) were analyzed using Western blotting. The colony number decrease in cells was 50.54%, 37.88% and 27.12% following exposure to compounds 2d, 2g and 4b respectively at 10 μM. We also show that treating the neuroblastoma cell line with these compounds resulted in a significant alteration in caspase-3 and PARP-1 cleavage.


Sign in / Sign up

Export Citation Format

Share Document