scholarly journals Wideband and high-order microwave vortex-beam launcher based on spoof surface plasmon polaritons

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lei Zhang ◽  
Min Deng ◽  
Weiwen Li ◽  
Guang Yang ◽  
Longfang Ye

AbstractThe electromagnetic vortex carrying orbital angular momentum (OAM), which is first studied at optical frequency, has begun to attract widespread attention in the field of radio-frequency/microwave. However, for the OAM mode generated by traditional single antennas, there are problems such as low order and narrow bandwidth, and complex structures such as dual-fed networks may be required. In this paper, based on spoof surface plasmon polariton (SSPP) mode leaky-wave antenna, a single-port traveling-wave ring is proposed to radiate high-order OAM modes working near the cut-off frequency of SSPP state. The achieved 12-order OAM mode within 9.1–10.1 GHz (relative bandwidth of 10.4%) has the main radiation direction close to the antenna surface, forming a plane spiral OAM (PSOAM) wave, which reduces the requirements for mode purity in practical applications. This SSPP ring using periodic units as radiating elements can be an effective radiator for broadband and large-capacity OAM multiplexing communications. The structural characteristics of single feed contribute to the integration of microwave circuits.

2018 ◽  
Vol 17 (12) ◽  
pp. 2409-2413 ◽  
Author(s):  
Yijuan Yang ◽  
Zheng Li ◽  
Shanzhe Wang ◽  
Xuyang Chen ◽  
Junhong Wang ◽  
...  

2019 ◽  
Vol 9 (16) ◽  
pp. 3297 ◽  
Author(s):  
Wang ◽  
Zhao ◽  
Li

As the fundamental and promising branch of nanophotonics, surface plasmon polaritons (SPP) with the ability of manipulating the electromagnetic field on the subwavelength scale are of interest to a wide spectrum of scientists. Composed of metallic or dielectric structures whose shape and position are carefully engineered on the metal surface, traditional SPP devices are generally static and lack tunability. Dynamical manipulation of SPP is meaningful in both fundamental research and practical applications. In this article, the achievements in dynamical SPP excitation, SPP focusing, SPP vortex, and SPP nondiffracting beams are presented. The mechanisms of dynamical SPP devices are revealed and compared, and future perspectives are discussed.


2014 ◽  
Vol 1659 ◽  
pp. 83-94
Author(s):  
Liu Chuanpu ◽  
Zhu Xinli ◽  
Zhang Jiasen ◽  
Xu Jun ◽  
Yu Dapeng

ABSTRACT:Surface plasmon polaritons (SPPs), which are coupled excitations of electrons bound to a metal-dielectric interface, show great potential for application in future nanoscale photonic systems due to the strong field confinement at the nanoscale, intensive local field enhancement, and interplay between strongly localized and propagating SPPs. The fabrication of sufficiently smooth metal surface with nanoscale feature size is crucial for SPPs to have practical applications. A template stripping (ST) method combined with PMMA as a template was successfully developed to create extraordinarily smooth metal nanostructures with a desirable feature size and morphology for plasmonics and metamaterials. The advantages of this method, including the high resolution, precipitous top-to bottom profile with a high aspect ratio, and three-dimensional characteristics, make it very suitable for the fabrication of plasmonic structures. By using this ST method, boxing ring-shaped nanocavities have been fabricated and the confined modes of surface plasmon polaritons in these nanocavities have been investigated and imaged by using cathodoluminescence (CL) spectroscopy, which has been turned out to be a powerful means to characterize the resonant SPPs modes confined in metal nanocavities [1∼5] . The mode of the out-of-plane field components of surface plasmon polaritons dominates the experimental mode patterns, indicating that the electron beam locally excites the out-of-plane field component of surface plasmon polaritons. Quality factors can be directly acquired from the spectra induced by the ultrasmooth surface of the cavity and the high reflectivity of the silver (Ag) reflectors. Because of its three-dimensional confined characteristics and the omnidirectional reflectors, the nanocavity exhibits a small modal volume, small total volume, rich resonant modes, and flexibility in mode control. Numerous applications, such as plasmonic filter, nanolaser, and efficient light-emitting devices, can be expected to arise from these developments.


Sign in / Sign up

Export Citation Format

Share Document