plane field
Recently Published Documents


TOTAL DOCUMENTS

152
(FIVE YEARS 19)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
pp. 2102132
Author(s):  
Daniele Vella ◽  
Marcelo B. Barbosa ◽  
Paolo E. Trevisanutto ◽  
Ivan Verzhbitskiy ◽  
Justin Yong Zhou ◽  
...  
Keyword(s):  

Author(s):  
R Arun ◽  
R Gopal ◽  
V. K. Chandrasekar ◽  
M Lakshmanan

Abstract We study the dynamics of a spin torque nano oscillator that consists of parallelly magnetized free and pinned layers by numerically solving the associated Landau-Lifshitz-Gilbert-Slonczewski equation in the presence of a field-like torque. We observe that an in-plane magnetic field which is applied for a short interval of time ($<$1ns) triggers the magnetization to exhibit self-oscillations from low energy initial magnetization state. Also, we confirm that the frequency of oscillations can be tuned over the range $\sim$25 GHz to $\sim$72 GHz by current, even in the absence of field-like torque. We find the frequency enhancement up to 10 GHz by the presence of field-like torque. We determine the Q-factor for different frequencies and show that it increases with frequency. Our analysis with thermal noise confirms that the system is stable against thermal noise and the dynamics is not altered appreciably by it.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1525
Author(s):  
Shiori Sugiura ◽  
Hiroki Akutsu ◽  
Yasuhiro Nakazawa ◽  
Taichi Terashima ◽  
Syuma Yasuzuka ◽  
...  

The Fermi surface structure of a layered organic superconductor β″-(BEDT-TTF)2SF5CH2CF2SO3 was determined by angular-dependent magnetoresistance oscillations measurements and band-structure calculations. This salt was found to have two small pockets with the same area: a deformed square hole pocket and an elliptic electron pocket. Characteristic corrugations in the field dependence of the interlayer resistance in the superconducting phase were observed at any in-plane field directions. The features were ascribed to the commensurability (CM) effect between the Josephson vortex lattice and the periodic nodal structure of the superconducting gap in the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) phase. The CM effect was observed in a similar field region for various in-plane field directions, in spite of the anisotropic nature of the Fermi surface. The results clearly showed that the FFLO phase stability is insensitive to the in-plane field directions.


Author(s):  
Hossein Lotfi ◽  
Mahboub Hosseinpour

By using 2.5-dimensional resistive MHD simulations, dynamics of the plasmoid instability in a Harris current sheet has been studied with taking into account two main controlling parameters: the plasma-β in the range (0 &lt; β &lt; 1) and the amplitude ratio of magnetic guide field to the reconnection plane field in three different cases with zero, uniform, and non-uniform guide field. Varying the plasma-β changes the plasma compressibility which affects significantly on the linear and nonlinear growth rates of the plasmoid instability. For each of three cases, some associated scaling relations between the instability growth rate, the plasma-β and the magnitude of guide field are obtained.


2021 ◽  
Vol 27 (S1) ◽  
pp. 380-381
Author(s):  
Binbin Wang ◽  
Po-kuan Wu ◽  
Núria Bagués ◽  
Qiang Zheng ◽  
Jiaqiang Yan ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Han Li ◽  
Hao-Kai Zhang ◽  
Jiucai Wang ◽  
Han-Qing Wu ◽  
Yuan Gao ◽  
...  

AbstractThe frustrated magnet α-RuCl3 constitutes a fascinating quantum material platform that harbors the intriguing Kitaev physics. However, a consensus on its intricate spin interactions and field-induced quantum phases has not been reached yet. Here we exploit multiple state-of-the-art many-body methods and determine the microscopic spin model that quantitatively explains major observations in α-RuCl3, including the zigzag order, double-peak specific heat, magnetic anisotropy, and the characteristic M-star dynamical spin structure, etc. According to our model simulations, the in-plane field drives the system into the polarized phase at about 7 T and a thermal fractionalization occurs at finite temperature, reconciling observations in different experiments. Under out-of-plane fields, the zigzag order is suppressed at 35 T, above which, and below a polarization field of 100 T level, there emerges a field-induced quantum spin liquid. The fractional entropy and algebraic low-temperature specific heat unveil the nature of a gapless spin liquid, which can be explored in high-field measurements on α-RuCl3.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chanhee Kim ◽  
Dilip Bhoi ◽  
Yeahan Sur ◽  
Byung-Gu Jeon ◽  
Dirk Wulferding ◽  
...  

AbstractIn order to understand the superconducting gap nature of a $$\hbox {2H-Pd}_{0.08} \hbox {TaSe}_2$$ 2H-Pd 0.08 TaSe 2 single crystal with $$T_{c} = 3.13 \text { K}$$ T c = 3.13 K , in-plane thermal conductivity $$\kappa $$ κ , in-plane London penetration depth $$\lambda _{\text {L}}$$ λ L , and the upper critical fields $$H_{c2}$$ H c 2 have been investigated. At zero magnetic field, it is found that no residual linear term $$\kappa _{0}/T$$ κ 0 / T exists and $$\lambda _{\text {L}}$$ λ L follows a power-law $$T^n$$ T n (T: temperature) with n = 2.66 at $$T \le \frac{1}{3}T_c$$ T ≤ 1 3 T c , supporting nodeless superconductivity. Moreover, the magnetic-field dependence of $$\kappa _{0}$$ κ 0 /T clearly shows a shoulder-like feature at a low field region. The temperature dependent $$H_{c2}$$ H c 2 curves for both in-plane and out-of-plane field directions exhibit clear upward curvatures near $$T_c$$ T c , consistent with the shape predicted by the two-band theory and the anisotropy ratio between the $$H_{c2}$$ H c 2 (T) curves exhibits strong temperature-dependence. All these results coherently suggest that $$\hbox {2H-Pd}_{0.08} \hbox {TaSe}_2$$ 2H-Pd 0.08 TaSe 2 is a nodeless, multiband superconductor.


2021 ◽  
Vol 527 ◽  
pp. 167725
Author(s):  
Lev Dorosinskiy ◽  
Sibylle Sievers ◽  
Xiukun Hu ◽  
Morris Lindner

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sai Saraswathi Yarajena ◽  
Rabindra Biswas ◽  
Varun Raghunathan ◽  
Akshay K. Naik

AbstractPiezoelectric response in two-dimensional (2D) materials has evoked immense interest in using them for various applications involving electromechanical coupling. In most of the 2D materials, piezoelectricity is coupled along the in-plane direction. Here, we propose a technique to probe the in-plane piezoelectric coupling strength in layered nanomaterials quantitively. The method involves a novel approach for in-plane field excitation in lateral Piezoresponse force microscopy (PFM) for 2D materials. Operating near contact resonance has enabled the measurement of the piezoelectric coupling coefficients in the sub pm/V range. Detailed methodology for the signal calibration and the background subtraction when PFM is operated near the contact resonance of the cantilever is also provided. The technique is verified by estimating the in-plane piezoelectric coupling coefficients (d11) for freely suspended MoS2 of one to five atomic layers. For 2D-MoS2 with the odd number of atomic layers, which are non-centrosymmetric, finite d11 is measured. The measurements also indicate that the coupling strength decreases with an increase in the number of layers. The techniques presented would be an effective tool to study the in-plane piezoelectricity quantitatively in various materials along with emerging 2D-materials.


Sign in / Sign up

Export Citation Format

Share Document