scholarly journals Determination of murine norovirus aerosol concentration during toilet flushing

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Corey Boles ◽  
Grant Brown ◽  
Matthew Nonnenmann

AbstractMurine norovirus (MNV) was used as a surrogate for human viral pathogens (e.g., norovirus) to determine if toilet flushing resulted in the aerosolization of virus. A flushometer type toilet was seeded with a viral solution of 105 and 106 PFU mL-1 of MNV and then flushed. Upon flushing, two bioaerosol samplers were activated to collect aerosolized MNV. Prior to the experiment, two optical particle counters monitored particle size and number distribution of aerosol produced from flushing a toilet across height, position, and side. The location with the highest mean particle concentration, was behind the toilet and 0.15 m above the toilet bowl rim, which is where bioaerosol sampling occurred. Bioaerosol and toilet water samples were collected, extracted and then quantified using RT-ddPCR. The concentration of MNV collected after seeding the toilet water ranged from 2.18 × 105 to 9.65 × 106 total copies of MNV. Positive samples of airborne MNV were detected with collected concentrations ranging from 383 to 684 RNA copies/m3 of air. This study provides evidence that viral pathogens may be aerosolized when a toilet is flushed. Furthermore, the MNV used in this study is a model organism for human norovirus and may be generalizable to other viral pathogens (e.g., coronavirus). This study suggests that virus is aerosolized from toilet flushing and may contribute to human exposure to viral pathogens.

Viruses ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 759 ◽  
Author(s):  
Jasmine L. Madrigal ◽  
Sutonuka Bhar ◽  
Samantha Hackett ◽  
Haley Engelken ◽  
Ross Joseph ◽  
...  

The presence of commensal bacteria enhances both acute and persistent infection of murine noroviruses. For several enteric viral pathogens, mechanisms by which these bacteria enhance infection involve direct interactions between the virus and bacteria. While it has been demonstrated that human noroviruses bind to a variety of commensal bacteria, it is not known if this is also true for murine noroviruses. The goal of this study was to characterize interactions between murine noroviruses and commensal bacteria and determine the impact of bacterial growth conditions, incubation temperature and time, on murine norovirus attachment to microbes that comprise the mammalian microbiome. We show that murine noroviruses bind directly to commensal bacteria and show similar patterns of attachment as human norovirus VLPs examined under the same conditions. Furthermore, while binding levels are not impacted by the growth phase of the bacteria, they do change with time and incubation temperature. We also found that murine norovirus can bind to a commensal fungal species, Candida albicans.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6611
Author(s):  
Zohair Usfoor ◽  
Katharina Kaufmann ◽  
Al Shahriar Hossain Rakib ◽  
Roland Hergenröder ◽  
Victoria Shpacovitch

Nanoparticle Tracking Analysis (NTA) allows for the simultaneous determination of both size and concentration of nanoparticles in a sample. This study investigates the accuracy of particle size and concentration measurements performed on an LM10 device. For experiments, standard nanoparticles of different sizes composed of two materials with different refractive indices were used. Particle size measurements were found to have a decent degree of accuracy. This fact was verified by the manufacturer-reported particle size—determined by transmission electron microscopy (TEM)—as well as by performed scanning electron microscopy (SEM) measurements. On the other hand, concentration measurements resulted in overestimation of the particle concentration in majority of cases. Thus, our findings confirmed the accuracy of nanoparticle sizing performed by the LM10 instrument and highlighted the overestimation of particle concentration made by this device. In addition, an approach of swift correction of the results of concentration measurements received for samples is suggested in the presented study.


2014 ◽  
Vol 80 (24) ◽  
pp. 7505-7511 ◽  
Author(s):  
Satoshi Ishii ◽  
Gaku Kitamura ◽  
Takahiro Segawa ◽  
Ayano Kobayashi ◽  
Takayuki Miura ◽  
...  

ABSTRACTTo secure food and water safety, quantitative information on multiple pathogens is important. In this study, we developed a microfluidic quantitative PCR (MFQPCR) system to simultaneously quantify 11 major human viral pathogens, including adenovirus, Aichi virus, astrovirus, enterovirus, human norovirus, rotavirus, sapovirus, and hepatitis A and E viruses. Murine norovirus and mengovirus were also quantified in our MFQPCR system as a sample processing control and an internal amplification control, respectively. River water contaminated with effluents from a wastewater treatment plant in Sapporo, Japan, was collected and used to validate our MFQPCR system for multiple viruses. High-throughput quantitative information was obtained with a quantification limit of 2 copies/μl of cDNA/DNA. Using this MFQPCR system, we could simultaneously quantify multiple viral pathogens in environmental water samples. The viral quantities obtained using MFQPCR were similar to those determined by conventional quantitative PCR. Thus, the MFQPCR system developed in this study can provide direct and quantitative information for viral pathogens, which is essential for risk assessments.


2018 ◽  
Vol 2018 (12) ◽  
pp. 405-1-405-7
Author(s):  
Katherine Carpenter ◽  
Anthony Vodacek ◽  
Susan Farnand
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document