scholarly journals Alpha-to-beta- and gamma-band activity reflect predictive coding in affective visual processing

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andreas Strube ◽  
Michael Rose ◽  
Sepideh Fazeli ◽  
Christian Büchel

AbstractProcessing of negative affective pictures typically leads to desynchronization of alpha-to-beta frequencies (ERD) and synchronization of gamma frequencies (ERS). Given that in predictive coding higher frequencies have been associated with prediction errors, while lower frequencies have been linked to expectations, we tested the hypothesis that alpha-to-beta ERD and gamma ERS induced by aversive pictures are associated with expectations and prediction errors, respectively. We recorded EEG while volunteers were involved in a probabilistically cued affective picture task using three different negative valences to produce expectations and prediction errors. Our data show that alpha-to-beta band activity after stimulus presentation was related to the expected valence of the stimulus as predicted by a cue. The absolute mismatch of the expected and actual valence, which denotes an absolute prediction error was related to increases in alpha, beta and gamma band activity. This demonstrates that top-down predictions and bottom-up prediction errors are represented in typical spectral patterns associated with affective picture processing. This study provides direct experimental evidence that negative affective picture processing can be described by neuronal predictive coding computations.

2021 ◽  
Author(s):  
Andreas Strube ◽  
Michael Rose ◽  
Sepideh Fazeli ◽  
Christian Büchel

Processing of negative affective pictures typically leads to desynchronization of alpha-to-beta frequencies (ERD) and synchronization of gamma frequencies (ERS). Given that in predictive coding higher frequencies have been associated with prediction errors, while lower frequencies have been linked to expectations, we tested the hypothesis that alpha-to-beta ERD and gamma ERS induced by aversive pictures are associated with expectations and prediction errors, respectively. We recorded EEG while volunteers were involved in a probabilistically cued affective picture task using three different negative valences to produce expectations and prediction errors. Our data show that alpha-to-beta band activity was related to the expected valence of the stimulus as predicted by a cue. The absolute mismatch of the expected and actual valence, which denotes an absolute prediction error was related to gamma band activity. This demonstrates that top-down predictions and bottom-up prediction errors are represented in specific spectral patterns associated with affective picture processing.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Andreas Strube ◽  
Michael Rose ◽  
Sepideh Fazeli ◽  
Christian Büchel

In the context of a generative model, such as predictive coding, pain and heat perception can be construed as the integration of expectation and input with their difference denoted as a prediction error. In a previous neuroimaging study (Geuter et al., 2017) we observed an important role of the insula in such a model but could not establish its temporal aspects. Here, we employed electroencephalography to investigate neural representations of predictions and prediction errors in heat and pain processing. Our data show that alpha-to-beta activity was associated with stimulus intensity expectation, followed by a negative modulation of gamma band activity by absolute prediction errors. This is in contrast to prediction errors in visual and auditory perception, which are associated with increased gamma band activity, but is in agreement with observations in working memory and word matching, which show gamma band activity for correct, rather than violated, predictions.


2015 ◽  
Vol 113 (5) ◽  
pp. 1564-1573 ◽  
Author(s):  
J. H. Kim ◽  
J. H. Chien ◽  
C. C. Liu ◽  
F. A. Lenz

Although the thalamus is an important module in “pain networks,” there are few studies of the effect of experimental pain upon thalamic oscillations. We have now examined the hypothesis that, during a series of painful cutaneous laser stimuli, thalamic signals will show stimulus-related gamma-band spectral activity, which is modulated by attention to vs. distraction from the painful stimulus. When the series of laser stimuli was presented, attention was focused by counting the laser stimuli (count laser task), while distraction was produced by counting backward (count back plus laser task). We have studied the effect of a cutaneous laser on thalamic local field potentials and EEG activity during awake procedures (deep brain stimulation implants) for the treatment of essential tremor. At different delays after the stimulus, three low gamma- (30–50 Hz) and two high gamma-band (70–90 Hz) activations were observed during the two tasks. Greater high-gamma activation was found during the count laser task for the earlier window, while greater high-gamma activation was found during the count back plus laser task for the later window. Thalamic signals were coherent with EEG signals in the beta band, which indicated significant synchrony. Thalamic cross-frequency coupling analysis indicated that the phase of the lower frequency activity (theta to beta) modulated the amplitude of the higher frequency activity (low and high gamma) more strongly during the count laser task than during the count back plus laser task. This modulation might result in multiplexed signals each encoding a different aspect of pain.


2016 ◽  
Vol 11 (6) ◽  
pp. 973-980 ◽  
Author(s):  
Stan van Pelt ◽  
Lieke Heil ◽  
Johan Kwisthout ◽  
Sasha Ondobaka ◽  
Iris van Rooij ◽  
...  

2001 ◽  
Vol 112 (7) ◽  
pp. 1219-1228 ◽  
Author(s):  
I.G Gurtubay ◽  
M Alegre ◽  
A Labarga ◽  
A Malanda ◽  
J Iriarte ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (9) ◽  
pp. e44215 ◽  
Author(s):  
Nicholas Maling ◽  
Rowshanak Hashemiyoon ◽  
Kelly D. Foote ◽  
Michael S. Okun ◽  
Justin C. Sanchez

2006 ◽  
Vol 43 (6) ◽  
pp. 533-540 ◽  
Author(s):  
Atsushi Matsumoto ◽  
Yoko Ichikawa ◽  
Noriaki Kanayama ◽  
Hideki Ohira ◽  
Tetsuya Iidaka

2008 ◽  
Vol 115 (9) ◽  
pp. 1301-1311 ◽  
Author(s):  
J. A. van Deursen ◽  
E. F. P. M. Vuurman ◽  
F. R. J. Verhey ◽  
V. H. J. M. van Kranen-Mastenbroek ◽  
W. J. Riedel

Cephalalgia ◽  
2007 ◽  
Vol 27 (12) ◽  
pp. 1360-1367 ◽  
Author(s):  
G Coppola ◽  
A Ambrosini ◽  
L Di Clemente ◽  
D Magis ◽  
A Fumal ◽  
...  

Between attacks, migraineurs lack habituation in standard visual evoked potentials (VEPs). Visual stimuli also evoke high-frequency oscillations in the gamma band range (GBOs, 20–35 Hz) assumed to be generated both at subcortical (early GBOs) and cortical levels (late GBOs). The consecutive peaks of GBOs were analysed regarding amplitude and habituation in six successive blocks of 100 averaged pattern reversal (PR)-VEPs in healthy volunteers and interictally in migraine with (MA) or without aura patients. Amplitude of the two early GBO components in the first PR-VEP block was significantly increased in MA patients. There was a significant habituation deficit of the late GBO peaks in migraineurs. The increased amplitude of early GBOs could be related to the increased interictal visual discomfort reported by patients. We hypothesize that the hypo-functioning serotonergic pathways may cause, in line with the thalamocortical dysrhythmia theory, a functional disconnection of the thalamus leading to decreased intracortical lateral inhibition, which can induce dishabituation.


Sign in / Sign up

Export Citation Format

Share Document