scholarly journals The activity of the intrinsically water-soluble enzyme ADAMTS13 correlates with the membrane state when bound to a phospholipid bilayer

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrej Kamenac ◽  
Tobias Obser ◽  
Achim Wixforth ◽  
Matthias F. Schneider ◽  
Christoph Westerhausen

AbstractMembrane-associated enzymes have been found to behave differently qualitatively and quantitatively in terms of activity. These findings were highly debated in the 1970s and many general correlations and reaction specific models have been proposed, reviewed, and discarded. However, new biological applications brought up the need for clarification and elucidation. To address literature shortcomings, we chose the intrinsically water-soluble enzyme a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13) and large unilamellar vesicles with a relative broad phase transition. We here present activity measurements of ADAMTS13 in the freely dissolved state and the membrane associated state for phosphocholine lipids with different acyl-chain lengths (13:0, 14:0 and 15:0) and thus main phase transition temperatures. While the freely dissolved enzyme shows a simple Arrhenius behavior, the activity of membrane associated ADAMTS13 in addition shows a peak. This peak temperature correlates with the main phase transition temperature of the used lipids. These findings support an alternative theory of catalysis. This theory predicts a correlation of the membrane associated activity and the heat capacity, as both are susceptibilities of the same surface Gibb’s free energy, since the enzyme is attached to the membrane.

2007 ◽  
Vol 62 (11-12) ◽  
pp. 881-888 ◽  
Author(s):  
Maria Stasiuk ◽  
Dominika Bartosiewicz ◽  
Jerzy Gubernator ◽  
Katarzyna Cieslik-Boczula ◽  
Martin Hof ◽  
...  

MSAR (1-sulfate-3-myristoyl-5-pentadecylbenzene) is a semisynthetic derivative of 5-npentadecylresorcinol (C15:0). MSAR exhibits hemolytic activity against sheep erythrocytes with a EH50 value of (35 ± 1.7) μm. At low concentrations MSAR also exhibits the ability to protect cells against their hypoosmotic lysis. This protective effect is significant as, at 0.1 μm of MSAR, the extent of osmotically induced cell lysis is reduced by approx. 20%. It was demonstrated that the 9-anthroyloxystearic acid signal was most intensively quenched by MSAR molecules, suggesting a relatively deep location of these molecules within the lipid bilayer. MSAR causes an increase of the fluorescence of the membrane potential sensitive probe. This indicates an alteration of the surface charge and a decrease of the local pH value at the membrane surface. At low bilayer content (1-4 mol%) this compound causes a significant increase of the phospholipid bilayer fluidity (both under and above the main phase transition temperature) of dipalmitoylphosphatidylcholine (DPPC) liposomes. At this low content MSAR slightly decreases the main phase transition temperature (Tc) value. The effects induced in the phospholipid bilayer by higher contents of MSAR molecules (5-10 mol%) make it impossible to determine the Tc value and to evaluate changes of the membrane fluidity by using pyrene-labeled lipid. MSAR also causes a decrease of the activity of membrane-bound enzymes-red blood cell acetylcholinesterase (AChE) and phospholipase A2 (PLA2). MSAR decreases the AChE activity by 40% at 100 μm. The presence of MSAR in the liposomal membrane induces a complete abolishment of the lag time of the PLA2 activity, indicating that these molecules induce the formation of packing defects in the bilayer which may result from imperfect mixing of phospholipids.


1984 ◽  
Vol 62 (11) ◽  
pp. 1134-1150 ◽  
Author(s):  
P. M. Macdonald ◽  
B. D. Sykes ◽  
R. N. McElhaney

The orientational order parameters of monofluoropalmitic acids biosynthetically incorporated into membranes of Acholeplasma laidlawii B in the presence of a large excess of a variety of structurally diverse fatty acids have been determined via 19F nuclear magnetic resonance (19F NMR) spectroscopy. It is demonstrated that these monofluoropalmitic acids are relatively nonperturbing membrane probes based upon physical (differential scanning calorimetry), biochemical (membrane lipid analysis), and biological (growth studies) criteria. 19F NMR is shown to convey the same qualitative and quantitative picture of membrane lipid order provided by 2H-NMR techniques and to be sensitive to the structural characteristics of the membrane fatty acyl chains, as well as to the lipid phase transition. Representatives of each naturally occurring class of fatty acyl chain structures, including straight-chain saturated, methyl-branched, monounsaturated, and alicyclic-ring-substituted fatty acids, were studied and the 19F-NMR order parameters were correlated with the lipid phase transitions (determined calorimetrically). The lipid phase transition was the prime determinant of overall orientational order regardless of fatty acid structure. Effects upon orientational order attributable to specific structural substituents were discernible, but were secondary to the effects of the lipid phase transition. In the gel state, relative overall order was directly proportional to the temperature of the particular lipid phase transition. Not only the overall order, but also the order profile across the membrane was sensitive to the presence of particular structural substituents. In particular, in the gel state specific fatty acyl structures demonstrated a characteristic disordering effect in the membrane order profile. These various observations can be merged to provide a unified picture of the manner in which fatty acyl chain chemistry modulates the physical state of membrane lipids.


1988 ◽  
Vol 943 (3) ◽  
pp. 522-530 ◽  
Author(s):  
Yoshiron Kaminoh ◽  
Fumiaki Kanô ◽  
Jang-Shing Chiou ◽  
Hiroshi Kamaya ◽  
Sheng H. Lin ◽  
...  

1988 ◽  
Vol 106 (6) ◽  
pp. 1885-1892 ◽  
Author(s):  
D M Haverstick ◽  
M Glaser

Large vesicles (5-10-micron in diameter) were formed in the presence of phospholipids fluorescently labeled on the acyl chain and visualized using a fluorescence microscope, charge-coupled-device camera and digital image processor. When such vesicles contained a fluorescent phosphatidic acid (PA) and were exposed to 2 mM CaCl2 or 0.5 mM PrCl3, it was possible to visualize PA-enriched domains within the vesicles. Calcium-induced domain formation was reversible in the presence of 4 mM EGTA. Vesicles were formed containing fluorescent PA on either the inner or outer leaflet of the bilayer and the patching and dissolution of patching were studied under conditions where calcium was present on the outside of the vesicle and where calcium was distributed across the bilayer. In addition, vesicles were formed with two different fluorescent PA's, one on the inner leaflet and a different one on the outer leaflet of the bilayer. The results of the experiments show that in vesicles formed primarily with naturally occurring phospholipids such as egg phosphatidylcholine or brain phosphatidylethanolamine, there was no coordinate action of the two leaflets of the bilayer. An exception to this was found, however, if the vesicles were formed in the presence of primarily dioleoyl phospholipids (greater than 95 mol %). In these vesicles there was a coordinate or coupled response to calcium by the two leaflets of the bilayer. In most cases, however, the two leaflets of the bilayer showed independent or uncoupled domain formation.


2010 ◽  
Vol 1189 (1) ◽  
pp. 77-85 ◽  
Author(s):  
Kaori Tada ◽  
Masaki Goto ◽  
Nobutake Tamai ◽  
Hitoshi Matsuki ◽  
Shoji Kaneshina

Sign in / Sign up

Export Citation Format

Share Document