scholarly journals Palaeoenvironmental proxies indicate long-term development of agro-pastoralist landscapes in Inner Asian mountains

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael Spate ◽  
Mumtaz A. Yatoo ◽  
Dan Penny ◽  
Mohammad Ajmal Shah ◽  
Alison Betts

AbstractA growing body of archaeological research on agro-pastoralist populations of the Inner Asian mountains indicates that these groups adapted various systems of mobile herding and cultivation to ecotopes across the region from as early as 5000 BP. It has been argued that these adaptations allowed the development of flexible social-ecological systems well suited to the long-term management of these mountain landscapes. At present, less attention has been paid to examining the long-term ecological legacy of these adaptations within the sedimentary or palaeoenvironmental record. Here we present sediment, palynomorph and charcoal data that we interpret as indicating agro-pastoralist environmental perturbations, taken from three cores at middle and high altitudes in the Kashmir Valley at the southern end of the Inner Asian mountains. Our data indicate spatially and temporally discontinuous patterns of agro-pastoralist land use beginning close to 4000 BP. Periods of intensification of upland herding are often coincident with phases of regional social or environmental change, in particular we find the strongest signals for agro-pastoralism in the environmental record contemporary with regionally arid conditions. These patterns support previous arguments that specialised agro-pastoralist ecologies across the region are well placed to respond to past and future climate deteriorations. Our data indicating long-term co-evolution of humans and landscape in the study area also have implications for the ongoing management of environments generally perceived as “pristine” or “wilderness”.

2017 ◽  
Vol 284 (1868) ◽  
pp. 20171192 ◽  
Author(s):  
A.-S. Lafuite ◽  
C. de Mazancourt ◽  
M. Loreau

Natural habitat destruction and fragmentation generate a time-delayed loss of species and associated ecosystem services. As social–ecological systems (SESs) depend on a range of ecosystem services, lagged ecological dynamics may affect their long-term sustainability. Here, we investigate the role of consumption changes for sustainability, under a time-delayed ecological feedback on agricultural production. We use a stylized model that couples the dynamics of biodiversity, technology, human demography and compliance with a social norm prescribing sustainable consumption. Compliance with the sustainable norm reduces both the consumption footprint and the vulnerability of SESs to transient overshoot-and-collapse population crises. We show that the timing and interaction between social, demographic and ecological feedbacks govern the transient and long-term dynamics of the system. A sufficient level of social pressure (e.g. disapproval) applied on the unsustainable consumers leads to the stable coexistence of unsustainable and sustainable or mixed equilibria, where both defectors and conformers coexist. Under bistability conditions, increasing extinction debts reduces the resilience of the system, thus favouring abrupt regime shifts towards unsustainable pathways. Given recent evidence of large extinction debts, such results call for farsightedness and a better understanding of time delays when studying the sustainability of coupled SESs.


2006 ◽  
Vol 2 (2) ◽  
pp. 133-155 ◽  
Author(s):  
JOHN M. ANDERIES

Societies frequently generate public infrastructure and institutional arrangements in order to mediate short-term environmental fluctuations. However, the social and ecological consequences of activities dealing with short-term disturbances may increase the vulnerability of the system to infrequent events or to long-term change in patterns of short-term variability. Exploring this possibility requires the study of long-term, transformational change. The archaeological record provides many examples of long-term change, such as the Hohokam who occupied the Phoenix Basin for over a thousand years and developed a complex irrigation society. In the eleventh and fourteenth centuries, the Hohokam society experienced reductions in complexity and scale possibly associated with regional climatic events. We apply a framework designed to explore robustness in coupled social-ecological systems to the Hohokam Cultural Sequence. Based on this analysis, a stylized formal model is developed to explore the possibility that the success of the Hohokam irrigation system and associated social structure may have increased their vulnerability to rare climactic shocks.


2020 ◽  
Vol 549 ◽  
pp. 1-4
Author(s):  
Sean P.A. Desjardins ◽  
Peter D. Jordan ◽  
T. Max Friesen ◽  
Mary-Louise Timmermans

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256803
Author(s):  
Anders Forsman ◽  
Tine De Moor ◽  
René van Weeren ◽  
Mike Farjam ◽  
Molood Ale Ebrahim Dehkordi ◽  
...  

Human societies and natural ecosystems are under threat by growing populations, overexploitation of natural resources and climate change. This calls for more sustainable utilization of resources based on past experiences and insights from many different disciplines. Interdisciplinary approaches to studies of historical commons have potential to identify drivers of change and keys to success in the past, and offer advice about the management and use of shared resources in contemporary and future systems. We address these issues by applying an ecological perspective to historical data on social-ecological systems. We perform comparisons and time series analyses for nine successful Dutch commons for which high-resolution data on the regulatory activities and use of shared resources is available for on average 380 years (range 236 to 568) during the period 1300 to 1972. Within commons, institutional developments were oscillating, with periods of intense regulatory activity being separated by periods of low activity, and with the dynamics of regulations being largely independent across commons. Ecological theory posits that species that occupy similar niches should show correlated responses to environmental challenges; however, commons using more similar resources did not have more parallel or similar institutional developments. One notable exception was that sanctioning was more frequent in commons that directed more regulatory activities towards non-renewable subsoil resources, whereas there was no association between sanctioning and the use of renewable resources. This might indicate that commoners were aware of potential resource depletion and attempted to influence freeriding by actively trying to solve the underlying social dilemmas. Sanctioning regulations were more frequent during the first than during the second part of a common’s life, indicating that while sanctioning might have been important for the establishment of commons it was not key to the long-term persistence of historical commons.


2019 ◽  
Vol 11 (7) ◽  
pp. 1961 ◽  
Author(s):  
Olivera Kostoska ◽  
Ljupco Kocarev

Sustainable development is critical to ensure the future of humanity. Therefore, the assessment and governance of sustainability becomes a central challenge our society is facing. This paper provides a novel ICT framework for addressing sustainable development goals. It is characterized by both local and global considerations, in the context of economic, ecological, and social aspects of sustainable development. The framework consists of three modules: data module, sustainability module, and governance module. Data module integrates data from several sources, processes data, infers knowledge, and transforms data into understandable information and knowledge. The second module implements SDGs at the level of municipality/city, ensures ranking of locally transformed SDGs to arrange them in line with the values and needs of the local communities, and proposes an integrated approach in modeling the social-ecological systems. By implementing governance theories, the governance module permits an effective citizen engagement in governance of SDGs. The ICT framework addresses short-term and long-term SDGs and allows for the vertical and horizontal linkages among diverse stakeholders, as well as for their contributions to the nested rule structures employed at operational, collective, and constitutional levels. Thus, the framework we provide here ensures a paradigm shift in approaching SDGs for the advancement of our society.


2018 ◽  
Vol 16 (S1) ◽  
pp. S4-S10 ◽  
Author(s):  
Lilian Alessa ◽  
Andrew Kliskey ◽  
James Gosz ◽  
David Griffith ◽  
Amber Ziegler

2017 ◽  
Author(s):  
A.-S. Lafuite ◽  
M. Loreau

AbstractThe sustainability of coupled social-ecological systems (SESs) hinges on their long-term ecological dynamics. Land conversion generates extinction and functioning debts, i.e. a time-delayed loss of species and associated ecosystem services. Sustainability theory, however, has not so far considered the long-term consequences of these ecological debts on SESs. We investigate this question using a dynamical model that couples human demography, technological change and biodiversity. Human population growth drives land conversion, which in turn reduces biodiversity-dependent ecosystem services to agricultural production (ecological feedback). Technological change brings about a demographic transition leading to a population equilibrium. When the ecological feedback is delayed in time, some SESs experience population overshoots followed by large reductions in biodiversity, human population size and well-being, which we call environmental crises. Using a sustainability criterion that captures the vulnerability of an SES to such crises, we show that some of the characteristics common to modern SESs (e.g. high production efficiency and labor intensity, concave-down ecological relationships) are detrimental to their long-term sustainability. Maintaining sustainability thus requires strong counteracting forces, such as the demographic transition and land-use management. To this end, we provide integrative sustainability thresholds for land conversion, biodiversity loss and human population size - each threshold being related to the others through the economic, technological, demographic and ecological parameters of the SES. Numerical simulations show that remaining within these sustainable boundaries prevents environmental crises from occurring. By capturing the long-term ecological and socioeconomic drivers of SESs, our theoretical approach proposes a new way to define integrative conservation objectives that ensure the long-term sustainability of our planet.


Sign in / Sign up

Export Citation Format

Share Document