scholarly journals MAPRE2 mutations result in altered human cranial neural crest migration, underlying craniofacial malformations in CSC-KT syndrome

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cedric Thues ◽  
Jorge S. Valadas ◽  
Liesbeth Deaulmerie ◽  
Ann Geens ◽  
Amit K. Chouhan ◽  
...  

AbstractCircumferential skin creases (CSC-KT) is a rare polymalformative syndrome characterised by intellectual disability associated with skin creases on the limbs, and very characteristic craniofacial malformations. Previously, heterozygous and homozygous mutations in MAPRE2 were found to be causal for this disease. MAPRE2 encodes for a member of evolutionary conserved microtubule plus end tracking proteins, the end binding (EB) family. Unlike MAPRE1 and MAPRE3, MAPRE2 is not required for the persistent growth and stabilization of microtubules, but plays a role in other cellular processes such as mitotic progression and regulation of cell adhesion. The mutations identified in MAPRE2 all reside within the calponin homology domain, responsible to track and interact with the plus-end tip of growing microtubules, and previous data showed that altered dosage of MAPRE2 resulted in abnormal branchial arch patterning in zebrafish. In this study, we developed patient derived induced pluripotent stem cell lines for MAPRE2, together with isogenic controls, using CRISPR/Cas9 technology, and differentiated them towards neural crest cells with cranial identity. We show that changes in MAPRE2 lead to alterations in neural crest migration in vitro but also in vivo, following xenotransplantation of neural crest progenitors into developing chicken embryos. In addition, we provide evidence that changes in focal adhesion might underlie the altered cell motility of the MAPRE2 mutant cranial neural crest cells. Our data provide evidence that MAPRE2 is involved in cellular migration of cranial neural crest and offers critical insights into the mechanism underlying the craniofacial dysmorphisms and cleft palate present in CSC-KT patients. This adds the CSC-KT disorder to the growing list of neurocristopathies.

2017 ◽  
Author(s):  
Miriam A. Genuth ◽  
Christopher D.C. Allen ◽  
Takashi Mikawa ◽  
Orion D. Weiner

SummaryIn vivo quantitative imaging reveals that chick cranial neural crest cells throughout the migratory stream are morphologically polarized and migrate by progressively refining the polarity of their protrusions.AbstractTo move directionally, cells can bias the generation of protrusions or select among randomly generated protrusions. Here we use 3D two-photon imaging of chick branchial arch 2 directed neural crest cells to probe how these mechanisms contribute to directed movement, whether a subset or the majority of cells polarize during movement, and how the different classes of protrusions relate to one another. We find that cells throughout the stream are morphologically polarized along the direction of overall stream movement and that there is a progressive sharpening of the morphological polarity program. Neural crest cells have weak spatial biases in filopodia generation and lifetime. Local bursts of filopodial generation precede the generation of larger protrusions. These larger protrusions are more spatially biased than the filopodia, and the subset of protrusions that power motility are the most polarized of all. Orientation rather than position is the best correlate of the protrusions that are selected for cell movement. This progressive polarity refinement strategy may enable neural crest cells to efficiently explore their environment and migrate accurately in the face of noisy guidance cues.


2014 ◽  
Vol 25 (1) ◽  
pp. 41-54 ◽  
Author(s):  
Andrew T. Schiffmacher ◽  
Rangarajan Padmanabhan ◽  
Sharon Jhingory ◽  
Lisa A. Taneyhill

The epithelial-to-mesenchymal transition (EMT) is a highly coordinated process underlying both development and disease. Premigratory neural crest cells undergo EMT, migrate away from the neural tube, and differentiate into diverse cell types during vertebrate embryogenesis. Adherens junction disassembly within premigratory neural crest cells is one component of EMT and, in chick cranial neural crest cells, involves cadherin-6B (Cad6B) down-regulation. Whereas Cad6B transcription is repressed by Snail2, the rapid loss of Cad6B protein during EMT is suggestive of posttranslational mechanisms that promote Cad6B turnover. For the first time in vivo, we demonstrate Cad6B proteolysis during neural crest cell EMT, which generates a Cad6B N-terminal fragment (NTF) and two C-terminal fragments (CTF1/2). Coexpression of relevant proteases with Cad6B in vitro shows that a disintegrin and metalloproteinases (ADAMs) ADAM10 and ADAM19, together with γ-secretase, cleave Cad6B to produce the NTF and CTFs previously observed in vivo. Of importance, both ADAMs and γ-secretase are expressed in the appropriate spatiotemporal pattern in vivo to proteolytically process Cad6B. Overexpression or depletion of either ADAM within premigratory neural crest cells prematurely reduces or maintains Cad6B, respectively. Collectively these results suggest a dual mechanism for Cad6B proteolysis involving two ADAMs, along with γ-secretase, during cranial neural crest cell EMT.


2016 ◽  
Vol 213 (5) ◽  
pp. 505-507 ◽  
Author(s):  
Marianne E. Bronner

Collective cell migration is a common feature in both embryogenesis and metastasis. By coupling studies of neural crest migration in vivo and in vitro with mathematical modeling, Szabó et al. (2016, J. Cell Biol., http://dx.doi.org/10.1083/jcb.201602083) demonstrate that the proteoglycan versican forms a physical boundary that constrains neural crest cells to discrete streams, in turn facilitating their migration.


2011 ◽  
Vol 22 (18) ◽  
pp. 3355-3365 ◽  
Author(s):  
Shuyi Nie ◽  
Yun Kee ◽  
Marianne Bronner-Fraser

Caldesmon (CaD) is an important actin modulator that associates with actin filaments to regulate cell morphology and motility. Although extensively studied in cultured cells, there is little functional information regarding the role of CaD in migrating cells in vivo. Here we show that nonmuscle CaD is highly expressed in both premigratory and migrating cranial neural crest cells of Xenopus embryos. Depletion of CaD with antisense morpholino oligonucleotides causes cranial neural crest cells to migrate a significantly shorter distance, prevents their segregation into distinct migratory streams, and later results in severe defects in cartilage formation. Demonstrating specificity, these effects are rescued by adding back exogenous CaD. Interestingly, CaD proteins with mutations in the Ca2+-calmodulin–binding sites or ErK/Cdk1 phosphorylation sites fail to rescue the knockdown phenotypes, whereas mutation of the PAK phosphorylation site is able to rescue them. Analysis of neural crest explants reveals that CaD is required for the dynamic arrangements of actin and, thus, for cell shape changes and process formation. Taken together, these results suggest that the actin-modulating activity of CaD may underlie its critical function and is regulated by distinct signaling pathways during normal neural crest migration.


1985 ◽  
Vol 101 (2) ◽  
pp. 610-617 ◽  
Author(s):  
M Bronner-Fraser

The possible role of a 140-kD cell surface complex in neural crest adhesion and migration was examined using a monoclonal antibody JG22, first described by Greve and Gottlieb (1982, J. Cell. Biochem. 18:221-229). The addition of JG22 to neural crest cells in vitro caused a rapid change in morphology of cells plated on either fibronectin or laminin substrates. The cells became round and phase bright, often detaching from the dish or forming aggregates of rounded cells. Other tissues such as somites, notochords, and neural tubes were unaffected by the antibody in vitro even though the JG22 antigen is detectable in embryonic tissue sections on the surface of the myotome, neural tube, and notochord. The effects of the JG22 on neural crest migration in vivo were examined by a new perturbation approach in which both the antibody and the hybridoma cells were microinjected onto neural crest pathways. Hybridoma cells were labeled with a fluorescent cell marker that is nondeleterious and that is preserved after fixation and tissue sectioning. The JG22 antibody and hybridoma cells caused a marked reduction in cranial neural crest migration, a build-up of neural crest cells within the lumen of the neural tube, and some migration along aberrant pathways. Neural crest migration in the trunk was affected to a much lesser extent. In both cranial and trunk regions, a cell free zone of one or more cell diameters was generally observed between neural crest cells and the JG22 hybridoma cells. Two other monoclonal antibodies, 1-B and 1-N, were used as controls. Both 1-B and 1-N bind to bands of the 140-kD complex precipitated by JG22. Neither control antibody affected neural crest adhesion in vitro or neural crest migration in situ. This suggests that the observed alterations in neural crest migration are due to a functional block of the 140-kD complex.


1988 ◽  
Vol 106 (4) ◽  
pp. 1321-1329 ◽  
Author(s):  
M Bronner-Fraser ◽  
T Lallier

INO (inhibitor of neurite outgrowth) is a monoclonal antibody that blocks axon outgrowth, presumably by functionally blocking a laminin-heparan sulfate proteoglycan complex (Chiu, A. Y., W. D. Matthew, and P. H. Patterson. 1986. J. Cell Biol. 103: 1382-1398). Here the effect of this antibody on avian neural crest cells was examined by microinjecting INO onto the pathways of cranial neural crest migration. After injection lateral to the mesencephalic neural tube, the antibody had a primarily unilateral distribution. INO binding was observed in the basal laminae surrounding the neural tube, ectoderm, and endoderm, as well as within the cranial mesenchyme on the injected side of the embryo. This staining pattern was indistinguishable from those observed with antibodies against laminin or heparan sulfate proteoglycan. The injected antibody remained detectable for 18 h after injection, with the intensity of immuno-reactivity decreasing with time. Embryos ranging from the neural fold stage to the 9-somite stage were injected with INO and subsequently allowed to survive for up to 1 d after injection. These embryos demonstrated severe abnormalities in cranial neural crest migration. The predominant defects were ectopic neural crest cells external to the neural tube, neural crest cells within the lumen of the neural tube, and neural tube deformities. In contrast, embryos injected with antibodies against laminin or heparan sulfate proteoglycan were unaffected. When embryos with ten or more somites were injected with INO, no effects were noted, suggesting that embryos are sensitive for only a limited time during their development. Immunoprecipitation of the INO antigen from 2-d chicken embryos revealed a 200-kD band characteristic of laminin and two broad smears between 180 and 85 kD, which were resolved into several bands at lower molecular mass after heparinase digestion. These results indicate that INO precipitates both laminin and proteoglycans bearing heparan sulfate residues. Thus, microinjection of INO causes functional blockage of a laminin-heparan sulfate proteoglycan complex, resulting in abnormal cranial neural crest migration. This is the first evidence that a laminin-heparan sulfate proteoglycan complex is involved in aspects of neural crest migration in vivo.


2002 ◽  
Vol 159 (5) ◽  
pp. 867-880 ◽  
Author(s):  
Lisette Hari ◽  
Véronique Brault ◽  
Maurice Kléber ◽  
Hye-Youn Lee ◽  
Fabian Ille ◽  
...  

β-Catenin plays a pivotal role in cadherin-mediated cell adhesion. Moreover, it is a downstream signaling component of Wnt that controls multiple developmental processes such as cell proliferation, apoptosis, and fate decisions. To study the role of β-catenin in neural crest development, we used the Cre/loxP system to ablate β-catenin specifically in neural crest stem cells. Although several neural crest–derived structures develop normally, mutant animals lack melanocytes and dorsal root ganglia (DRG). In vivo and in vitro analyses revealed that mutant neural crest cells emigrate but fail to generate an early wave of sensory neurogenesis that is normally marked by the transcription factor neurogenin (ngn) 2. This indicates a role of β-catenin in premigratory or early migratory neural crest and points to heterogeneity of neural crest cells at the earliest stages of crest development. In addition, migratory neural crest cells lateral to the neural tube do not aggregate to form DRG and are unable to produce a later wave of sensory neurogenesis usually marked by the transcription factor ngn1. We propose that the requirement of β-catenin for the specification of melanocytes and sensory neuronal lineages reflects roles of β-catenin both in Wnt signaling and in mediating cell–cell interactions.


Development ◽  
1999 ◽  
Vol 126 (10) ◽  
pp. 2181-2189 ◽  
Author(s):  
B.J. Eickholt ◽  
S.L. Mackenzie ◽  
A. Graham ◽  
F.S. Walsh ◽  
P. Doherty

Collapsin-1 belongs to the Semaphorin family of molecules, several members of which have been implicated in the co-ordination of axon growth and guidance. Collapsin-1 can function as a selective chemorepellent for sensory neurons, however, its early expression within the somites and the cranial neural tube (Shepherd, I., Luo, Y., Raper, J. A. and Chang, S. (1996) Dev. Biol. 173, 185–199) suggest that it might contribute to the control of additional developmental processes in the chick. We now report a detailed study on the expression of collapsin-1 as well as on the distribution of collapsin-1-binding sites in regions where neural crest cell migration occurs. collapsin-1 expression is detected in regions bordering neural crest migration pathways in both the trunk and hindbrain regions and a receptor for collapsin-1, neuropilin-1, is expressed by migrating crest cells derived from both regions. When added to crest cells in vitro, a collapsin-1-Fc chimeric protein induces morphological changes similar to those seen in neuronal growth cones. In order to test the function of collapsin-1 on the migration of neural crest cells, an in vitro assay was used in which collapsin-1-Fc was immobilised in alternating stripes consisting of collapsin-Fc/fibronectin versus fibronectin alone. Explanted neural crest cells derived from both trunk and hindbrain regions avoided the collapsin-Fc-containing substratum. These results suggest that collapsin-1 signalling can contribute to the patterning of neural crest cell migration in the developing chick.


Development ◽  
2000 ◽  
Vol 127 (8) ◽  
pp. 1671-1679 ◽  
Author(s):  
Y. Chai ◽  
X. Jiang ◽  
Y. Ito ◽  
P. Bringas ◽  
J. Han ◽  
...  

Neural crest cells are multipotential stem cells that contribute extensively to vertebrate development and give rise to various cell and tissue types. Determination of the fate of mammalian neural crest has been inhibited by the lack of appropriate markers. Here, we make use of a two-component genetic system for indelibly marking the progeny of the cranial neural crest during tooth and mandible development. In the first mouse line, Cre recombinase is expressed under the control of the Wnt1 promoter as a transgene. Significantly, Wnt1 transgene expression is limited to the migrating neural crest cells that are derived from the dorsal CNS. The second mouse line, the ROSA26 conditional reporter (R26R), serves as a substrate for the Cre-mediated recombination. Using this two-component genetic system, we have systematically followed the migration and differentiation of the cranial neural crest (CNC) cells from E9.5 to 6 weeks after birth. Our results demonstrate, for the first time, that CNC cells contribute to the formation of condensed dental mesenchyme, dental papilla, odontoblasts, dentine matrix, pulp, cementum, periodontal ligaments, chondrocytes in Meckel's cartilage, mandible, the articulating disc of temporomandibular joint and branchial arch nerve ganglia. More importantly, there is a dynamic distribution of CNC- and non-CNC-derived cells during tooth and mandibular morphogenesis. These results are a first step towards a comprehensive understanding of neural crest cell migration and differentiation during mammalian craniofacial development. Furthermore, this transgenic model also provides a new tool for cell lineage analysis and genetic manipulation of neural-crest-derived components in normal and abnormal embryogenesis.


Sign in / Sign up

Export Citation Format

Share Document