promote cell migration
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 44)

H-INDEX

32
(FIVE YEARS 3)

2021 ◽  
Vol 12 (4) ◽  
pp. 71
Author(s):  
Amirhossein Farahani ◽  
Abbas Zarei-Hanzaki ◽  
Hamid Reza Abedi ◽  
Lobat Tayebi ◽  
Ebrahim Mostafavi

Polylactide acid (PLA), as an FDA-approved biomaterial, has been widely applied due to its unique merits, such as its biocompatibility, biodegradability, and piezoelectricity. Numerous utilizations, including sensors, actuators, and bio-application—its most exciting application to promote cell migration, differentiation, growth, and protein–surface interaction—originate from the piezoelectricity effect. Since PLA exhibits piezoelectricity in both crystalline structure and an amorphous state, it is crucial to study it closely to understand the source of such a phenomenon. In this respect, in the current study, we first reviewed the methods promoting piezoelectricity. The present work is a comprehensive review that was conducted to promote the low piezoelectric constant of PLA in numerous procedures. In this respect, its chemistry and structural origins have been explored in detail. Combining any other variables to induce a specific application or to improve any PLA barriers, namely, its hydrophobicity, poor electrical conductivity, or the tuning of its mechanical properties, especially in the application of cardiovascular tissue engineering, is also discussed wherever relevant.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1659
Author(s):  
Tingming Liang ◽  
Lulu Shen ◽  
Yaya Ji ◽  
Lin Jia ◽  
Yuyang Dou ◽  
...  

Intrahepatic cholangiocarcinoma (ICC) is a common type of human cancer with a poor prognosis, and investigating the potential molecular mechanisms that can contribute to gene diagnosis and therapy. Herein, based on the recently concerned vertebrate-specific Cyr61/CTGF/NOV (CCN) gene family because of its important roles in diverse diseases, we obtained NOV/CCN3 to query for its potential roles in tumorigenesis via bioinformatics analysis. Experimental validations confirmed that both NOV mRNA and protein are up-regulated in two ICC cell lines, suggesting that it may promote cell migration and invasion by promoting EMT. To elucidate the detailed regulatory mechanism, miR-92a-3p is screened and identified as a negative regulatory small RNA targeting NOV, and further experimental validation demonstrates that miR-92a-3p contributes to NOV-mediated migration and invasion of ICC via the Notch signaling pathway. Our study reveals that NOV may be a potential target for diagnosing and treating ICC, which will provide experimental data and molecular theoretical foundation for cancer treatment, particularly for future precision medicine.


Author(s):  
Zihe Guo ◽  
Ayao Guo ◽  
Chuang Zhou

Continuous chemotherapy pressure-elicited annexin-A6 (ANXA6)-containing exosome (ANXA6-exo) secretion contributes to paclitaxel (PTX) resistance in breast cancer (BC), but the molecular mechanisms are not fully elucidated. The present study managed to investigate this issue and found that ANXA6-exo promoted PTX resistance and cancer progression in BC cells in a Yes-associated protein 1 (YAP1)-dependent manner. Specifically, the parental PTX-sensitive BC (PS-BC) cells were exposed to continuous low-dose PTX to generate PTX-resistant BC (PR-BC) cells, and we found that BC stem cells tended to be enriched in the descendent PR-BC cells in contrast with the PS-BC cells. In addition, PR-BC cell-derived exosomes were featured with highly expressed ANXA6, and ANXA6-exo delivered ANXA6 to promote cell migration, growth, autophagy, and stemness in PS-BC cells. Interestingly, ANXA6-exo increased PTX resistance in PS-BC cells via inducing autophagy, and the effects of ANXA6-exo on PTX resistance in PS-BC cells were abrogated by co-treating cells with the autophagy inhibitor 3-methyladenine. Moreover, the underlying mechanisms were uncovered, and we evidenced that ANXA6-exo up-regulated YAP1 to promote Hippo pathway dysregulation, and the promoting effects of ANXA6-exo on PTX resistance and cancer aggressiveness in BC cells were abrogated by silencing YAP1. Taken together, this study firstly elucidated the underlying mechanisms by which BCSC-derived ANXA6-exo facilitated BC progression and PTX resistance, which might help to develop novel treatment strategies for BC in clinic.


2021 ◽  
Vol 22 (18) ◽  
pp. 10096
Author(s):  
Marco Antonio Lacerda-Abreu ◽  
Thais Russo-Abrahão ◽  
Nathália Rocco-Machado ◽  
Daniela Cosentino-Gomes ◽  
Claudia Fernanda Dick ◽  
...  

According to the growth rate hypothesis (GRH), tumour cells have high inorganic phosphate (Pi) demands due to accelerated proliferation. Compared to healthy individuals, cancer patients present with a nearly 2.5-fold higher Pi serum concentration. In this work, we show that an increasing concentration of Pi had the opposite effect on Pi-transporters only in MDA-MB-231 when compared to other breast cell lines: MCF-7 or MCF10-A (non-tumoural breast cell line). Here, we show for the first time that high extracellular Pi concentration mediates ROS production in TNBC (MDA-MB-231). After a short-time exposure (1 h), Pi hyperpolarizes the mitochondrial membrane, increases mitochondrial ROS generation, impairs oxygen (O2) consumption and increases PKC activity. However, after 24 h Pi-exposure, the source of H2O2 seems to shift from mitochondria to an NADPH oxidase enzyme (NOX), through activation of PKC by H2O2. Exogenous-added H2O2 modulated Pi-transporters the same way as extracellular high Pi, which could be reversed by the addition of the antioxidant N-acetylcysteine (NAC). NAC was also able to abolish Pi-induced Epithelial-mesenchymal transition (EMT), migration and adhesion of MDA-MB-231. We believe that Pi transporters support part of the energy required for the metastatic processes stimulated by Pi and trigger Pi-induced H2O2 production as a signalling response to promote cell migration and adhesion.


2021 ◽  
Author(s):  
Song Tang ◽  
Jie Li ◽  
Yu Yuan ◽  
Zhoujie Gong ◽  
Zhenxiang Wang ◽  
...  

Abstract Background Periodontitis is a serious threat to oral quality of life and overall health. Although our previous studies confirmed that long intergenic non-coding RNA 01126 (LINC01126) is aberrantly expressed in periodontitis tissues, there are few reports on the pathogenesis of LINC01126 in periodontitis. Our study investigated the biological functions of LINC01126 in periodontitis and the potential mechanism. Results An inflammatory model of human gingival fibroblasts (HGFs) was successfully established. LINC01126 silencing can alleviate lipopolysaccharide (LPS) induced cell inflammation, reduce cell apoptosis, and promote cell migration. As a "sponge" for miR-655-3p, LINC01126 inhibits its binding to mRNA of IL-6, thereby promoting inflammation progression and JAK2/STAT3 pathway activation. qRT- PCR, WB, and IHC results of clinical tissue samples further confirmed that miR-655-3p expression was down-regulated and IL-6/JAK/STAT3 was abnormally activated in periodontitis tissues. Conclusions Our results indicate that LINC01126, as an endogenous competitive RNA (ceRNA) of miR-655-3p, can promote IL-6/JAK3/STAT3 pathway activation, thereby promoting periodontitis pathogenesis. And this is the first study of miR-655-3p in inflammatory periodontal diseases. Our study reveales a new pathogenesis of periodontitis, and provides a new strategy for preventing and treating periodontitis.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jie Mei ◽  
Yan Liu ◽  
Xinqian Yu ◽  
Leiyu Hao ◽  
Tao Ma ◽  
...  

AbstractDishevelled-associated activator of morphogenesis 1 (DAAM1) is a critical driver in facilitating metastasis in breast cancer (BrCa). However, molecular mechanisms for the regulation of DAAM1 activation are only partially elucidated. In this research, the expression levels of YWHAZ and DAAM1 were examined by immunohistochemistry (IHC) staining in BrCa tissues. The functional roles of tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ)–DAAM1 axis and their regulator microRNA-613 (miR-613) in BrCa cells and associated molecular mechanisms were demonstrated in vitro. As results, the expression levels of DAAM1 and YWHAZ were significantly upregulated in BrCa tissues compared with normal tissues and remarkably associated with poor prognosis. Besides, DAAM1 and YWHAZ were positively correlated with each other in BrCa tissues. YWHAZ interacted and colocalized with DAAM1 in BrCa cells, which was essential for DAAM1-mediated microfilament remodeling and RhoA activation. Moreover, miR-613 directly targeted both YWHAZ and DAAM1, contributing to inhibiting BrCa cells migration via blocking the complex of YWHAZ–DAAM1. To sum up, these data reveal that YWHAZ regulates DAAM1 activation, and the YWHAZ–DAAM1 complex is directly targeted by the shared post-transcriptional regulator miR-613.


NAR Cancer ◽  
2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Taylor R Nicholas ◽  
Stephanie A Metcalf ◽  
Benjamin M Greulich ◽  
Peter C Hollenhorst

Abstract Ewing sarcoma breakpoint region 1 (EWSR1) encodes a multifunctional protein that can cooperate with the transcription factor ERG to promote prostate cancer. The EWSR1 gene is also commonly involved in oncogenic gene rearrangements in Ewing sarcoma. Despite the cancer relevance of EWSR1, its regulation is poorly understood. Here we find that in prostate cancer, androgen signaling upregulates a 5′ EWSR1 isoform by promoting usage of an intronic polyadenylation site. This isoform encodes a cytoplasmic protein that can strongly promote cell migration and clonogenic growth. Deletion of an Androgen Receptor (AR) binding site near the 5′ EWSR1 polyadenylation site abolished androgen-dependent upregulation. This polyadenylation site is also near the Ewing sarcoma breakpoint hotspot, and androgen signaling promoted R-loop and breakpoint formation. RNase H overexpression reduced breakage and 5′ EWSR1 isoform expression suggesting an R-loop dependent mechanism. These data suggest that androgen signaling can promote R-loops internal to the EWSR1 gene leading to either early transcription termination, or breakpoint formation.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Mengmeng Zhuang ◽  
Yuequ Deng ◽  
Wenwen Zhang ◽  
Bo Zhu ◽  
Hao Yan ◽  
...  

AbstractIntestinal mucosal injuries are directly or indirectly related to many common acute and chronic diseases. Long non-coding RNAs (lncRNAs) are expressed in many diseases, including intestinal mucosal injury. However, the relationship between lncRNAs and intestinal mucosal injury has not been determined. Here, we investigated the functions and mechanisms of action of lncRNA Bmp1 on damaged intestinal mucosa. We found that Bmp1 was increased in damaged intestinal mucosal tissue and Bmp1 overexpression was able to alleviate intestinal mucosal injury. Bmp1 overexpression was found to influence cell proliferation, colony formation, and migration in IEC-6 or HIEC-6 cells. Moreover, miR-128-3p was downregulated after Bmp1 overexpression, and upregulation of miR-128-3p reversed the effects of Bmp1 overexpression in IEC-6 cells. Phf6 was observed to be a target of miR-128-3p. Furthermore, PHF6 overexpression affected IEC-6 cells by activating PI3K/AKT signaling which was mediated by the miR-128-3p/PHF6 axis. In conclusion, Bmp1 was found to promote the expression of PHF6 through the sponge miR-128-3p, activating the PI3K/AKT signaling pathway to promote cell migration and proliferation.


Sign in / Sign up

Export Citation Format

Share Document