scholarly journals Tissue factor pathway inhibitor upregulates CXCR7 expression and enhances CXCL12-mediated migration in chronic lymphocytic leukemia

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue Yan Cui ◽  
Geir Erland Tjønnfjord ◽  
Sandip M. Kanse ◽  
Anders Erik Astrup Dahm ◽  
Nina Iversen ◽  
...  

AbstractThe infiltration of chronic lymphocytic leukemia (CLL) cells into lymphoid organs correlates with disease severity. CXCL12 is a key chemotactic factor for the trafficking of CLL. Tissue factor pathway inhibitor (TFPI) is a serine protease inhibitor and plays a role in CXCL12-mediated hematopoietic stem cell homing. We aim to explore the role of TFPI in CXCL12-mediated migration of CLL cells. In this study, plasma TFPI concentrations were measured by ELISA. CLL cells were isolated from patients and used for trans-endothelial migration (TEM) assays. Quantitative RT-PCR and Western blotting were used to detect the expression of CXCR7, CXCR4 and β-catenin. Immunofluorescence and co-immunoprecipitation was used to detect the binding of TFPI and glypican-3 (GPC3). We found that plasma TFPI levels in CLL patients were higher than in healthy controls, particularly in the patients with advanced disease. TFPI enhanced CXCL12-mediated TEM of CLL cells by increasing the expression of the CXCL12 receptor CXCR7, but not of the CXCL12 receptor CXCR4. The effect of TFPI on TEM was abolished by the CXCR7 inhibitor, CCX771, while the CXCR4 inhibitor AMD3100 strongly increased TEM. TFPI co-localized with GPC3 on the cell surface. An antibody to GPC3, HS20, decreased CXCR7 expression and abolished the effect of TFPI on TEM. TFPI activated β-catenin and the Wnt/β-catenin inhibitor IWP4 repressed the effect of TFPI on CXCR7 expression and TEM. We conclude that TFPI may contribute to organ infiltration in CLL patients.

1996 ◽  
Vol 75 (05) ◽  
pp. 796-800 ◽  
Author(s):  
Sanne Valentin ◽  
Inger Schousboe

SummaryIn the present study, the interaction between tissue factor pathway inhibitor (TFPI) and phospholipids has been characterized using a microtitre plate assay. TFPI was shown to bind calcium-independently to an acidic phospholipid surface composed of phosphatidylserine, but not a surface composed of the neutral phosphatidylcholine. The interaction was demonstrated to be dependent on the presence of the TFPI C-terminus. The presence of heparin (1 U/ml, unfractionated) was able to significantly reduce the binding of TFPI to phospholipid. The interaction of TFPI with phosphatidylserine was significantly decreased in the presence of calcium, but this was counteracted, and even enhanced, following complex formation of TFPI with factor Xa prior to incubation with the phospholipid surface. Moreover, a TFPI variant, not containing the third Kunitz domain and the C-terminus, was unable to bind to phospholipid. However, following the formation of a TFPI/factor Xa-complex this TFPI variant was capable of interacting with the phospholipid surface. This indicates that the role of factor Xa as a TFPI cofactor, at least in part, is to mediate the binding of TFPI to the phospholipid surface.


2001 ◽  
Vol 101 (3) ◽  
pp. 203-211 ◽  
Author(s):  
Madhu S. Bajaj ◽  
Darren R. Tyson ◽  
Sarah A. Steer ◽  
Mohan N. Kuppuswamy

Blood Reviews ◽  
2013 ◽  
Vol 27 (3) ◽  
pp. 119-132 ◽  
Author(s):  
Kristien Winckers ◽  
Hugo ten Cate ◽  
Tilman M. Hackeng

Sign in / Sign up

Export Citation Format

Share Document