scholarly journals Radiative flow of non Newtonian nanofluids within inclined porous enclosures with time fractional derivative

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anas A. M. Arafa ◽  
Z. Z. Rashed ◽  
Sameh E. Ahmed

AbstractAn unsteady convection-radiation interaction flow of power-law non-Newtonian nanofluids using the time-fractional derivative is examined. The flow domain is an enclosure that has a free surface located at the top boundaries. Also, the geometry is filled by aluminum foam as a porous medium and the overall thermal conductivity as well as the heat capacity are approximated using a linear combination of the properties of the fluid and porous phases. Additionally, the dynamic viscosity and thermal conductivity of the mixture are expressed as a function of velocity gradients with a fractional power. Marangoni influences are imposed to the top free surface while the bottom boundaries are partially heated. Steps of the solution methodology are consisting of approximation of the time fractional derivatives using the conformable definition, using the finite differences method to discretize the governing system and implementation the resulting algebraic system. The main outcomes reveled that as the fractional order approaches to one, the maximum values of the stream function, the bulk-averaged temperature and cup-mixing temperature are reduces, regardless values of the time.

2020 ◽  
Vol 23 (6) ◽  
pp. 1647-1662
Author(s):  
Ravshan Ashurov ◽  
Sabir Umarov

Abstract The identification of the right order of the equation in applied fractional modeling plays an important role. In this paper we consider an inverse problem for determining the order of time fractional derivative in a subdiffusion equation with an arbitrary second order elliptic differential operator. We prove that the additional information about the solution at a fixed time instant at a monitoring location, as “the observation data”, identifies uniquely the order of the fractional derivative.


Ground Water ◽  
2017 ◽  
Vol 55 (6) ◽  
pp. 857-870 ◽  
Author(s):  
Rhiannon M. Garrard ◽  
Yong Zhang ◽  
Song Wei ◽  
HongGuang Sun ◽  
Jiazhong Qian

2009 ◽  
Author(s):  
Jérémie Raymond ◽  
Jean-Marie Finot ◽  
Jean-Michel Kobus ◽  
Gérard Delhommeau ◽  
Patrick Queutey ◽  
...  

The discussion is based on results gathered during the first two years of a 3 years research program for the benefits of Groupe Finot-Conq, Naval Architects. The introduction presents the objectives of the program: Setting up a practical method using numerical and experimental available tools to design fast planing sailing yachts. The aim of this paper is to compare advantages and disadvantages of four different kinds of CFD codes which are linear and non-linear potential flow approach, RANSE solver using finite differences method and RANSE solver using volume of fluid method. The Fluid Mechanics Laboratory of the Ecole Centrale de Nantes (France) has developed those three approaches so those homemade codes will be used for this study. The first one is REVA, a potential flow code with a linearised free surface condition. ICARE is a RANSE solver using finite differences method with a non linear free surface condition. It is extensively used for industrial projects as for sailing yachts projects (ACC for example). ISIS-CFD is a RANSE solver using finite volume method to build the spatial discretization of the transport equations with unstructured mesh. The latter is able to compute sprays for fast planing ships but is also the slower in terms of CPU time. In addition, we had the opportunity to test FS-FLOW which is a potential flow code with a non linear free surface condition distributed by FRIENDSHIP CONSULTING. Numerical results for the four codes are compared with the other codes' results as with tank tests data. Those tank tests were made using captive model test technique on two Open60' models. Reasons of the choice of the captive model technique are explained and experimental procedures are briefly described. Comparisons between codes are mainly based on the easiness of use, the cost in CPU time and the confidence we can have in the results as a function of the boat speed. Flow visualizations, pressure maps, free surface deformation are shown and compared. Analysis of local quantities integrated or by zone is also presented. Results are analyzed focusing on the ability of each code to represent flow dynamics for every speed with a special attention to high speeds. The practical question raised is to know which kind of answers each code can bring in terms of tendencies evaluation or sensitivity to hull geometry modifications. The main goal is to be able to judge if those codes are able to make reliable and consistent comparisons of different designs. Conclusion is that none of the codes is perfect and gather all the advantages. It is still difficult to propose a definitive methodology to estimate hydrodynamic performances at every speed and at every stage of the design process. Knowing each code limitations, it appears more coherent to use each of them at different stages of the design process: the quickest and less reliable to understand the main tendencies and the longest and more precise to validate the final options.


Fractals ◽  
2021 ◽  
Author(s):  
Siddra Habib ◽  
Amreen Batool ◽  
Asad Islam ◽  
Muhammad Nadeem ◽  
Khaled A. Gepreel ◽  
...  

2021 ◽  
pp. 2150297
Author(s):  
Ahmed E. Abouelregal ◽  
Hijaz Ahmad ◽  
Taher A. Nofal ◽  
Hanaa Abu-Zinadah

This paper analyzes the thermoelastic dynamic behavior of simply supported viscoelastic nanobeams of fractional derivative type due to a dynamic strength load. The viscoelastic Kelvin–Voigt model with fractional derivative with Bernoulli–Euler beam theory is introduced. The generalized thermoelastic heat conduction model with a two-phase lag is also used. It is assumed that the beam is rotating at a uniform angular velocity and that the thermal conductivity varies linearly depending on the temperature. Due to a variable harmonic heat and retreating time-dependent load, the nanobeam is excited. The Laplace integral transformation technique is used as the solution method. The thermodynamic temperature, deflection function, bending moment, and displacement are numerically calculated. Results of fractional and integer viscoelastic material models are compared. In the studied system, the effect of the nonlocal parameter, viscosity and varying load on the solutions is shown, and the temperature-dependence of the thermal conductivity is analyzed.


2020 ◽  
Vol 138 ◽  
pp. 109959 ◽  
Author(s):  
Yong Zhang ◽  
Xiangnan Yu ◽  
HongGuang Sun ◽  
Geoffrey R. Tick ◽  
Wei Wei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document