scholarly journals A python code for automatic construction of Fischer plots using proxy data

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daming Yang ◽  
Yongjian Huang ◽  
Zongyang Chen ◽  
Qinghua Huang ◽  
Yanguang Ren ◽  
...  

AbstractFischer plots are widely used in paleoenvironmental research as graphic representations of sea- and lake-level changes through mapping linearly corrected variation of accumulative cycle thickness over cycle number or stratum depth. Some kinds of paleoenvironmental proxy data (especially subsurface data, such as natural gamma-ray logging data), which preserve continuous cyclic signals and have been largely collected, are potential materials for constructing Fischer Plots. However, it is laborious to count the cycles preserved in these proxy data manually and map Fischer plots with these cycles. In this paper, we introduce an original open-source Python code “PyFISCHERPLOT” for constructing Fischer Plots in batches utilizing paleoenvironmental proxy data series. The principle of constructing Fischer plots based on proxy data, the data processing and usage of the PyFISCHERPLOT code and the application cases of the code are presented. The code is compared with existing methods for constructing Fischer plots.

2020 ◽  
Author(s):  
K. Thirumalesh ◽  
Salgeri Puttaswamy Raju ◽  
Hiriyur Mallaiah Somashekarappa ◽  
Kumaraswamy Swaroop

2016 ◽  
Vol 377 ◽  
pp. 40-57 ◽  
Author(s):  
Johanna Lofi ◽  
Antje Helga Luise Voelker ◽  
Emmanuelle Ducassou ◽  
F. Javier Hernández-Molina ◽  
Francisco J. Sierro ◽  
...  

2018 ◽  
Author(s):  
Françoise Allioli ◽  
Luisa Nicoletti ◽  
Christian Stoller ◽  
Libai Xu
Keyword(s):  

1982 ◽  
Vol 6 (4) ◽  
pp. 335-360 ◽  
Author(s):  
Walter H. Fertl ◽  
George V. Chilingarian ◽  
T. F. Yen

2012 ◽  
Vol 51 (05) ◽  
pp. 441-448 ◽  
Author(s):  
P. F. Neher ◽  
I. Reicht ◽  
T. van Bruggen ◽  
C. Goch ◽  
M. Reisert ◽  
...  

SummaryBackground: Diffusion-MRI provides a unique window on brain anatomy and insights into aspects of tissue structure in living humans that could not be studied previously. There is a major effort in this rapidly evolving field of research to develop the algorithmic tools necessary to cope with the complexity of the datasets.Objectives: This work illustrates our strategy that encompasses the development of a modularized and open software tool for data processing, visualization and interactive exploration in diffusion imaging research and aims at reinforcing sustainable evaluation and progress in the field.Methods: In this paper, the usability and capabilities of a new application and toolkit component of the Medical Imaging and Interaction Toolkit (MITK, www.mitk.org), MITKDI, are demonstrated using in-vivo datasets.Results: MITK-DI provides a comprehensive software framework for high-performance data processing, analysis and interactive data exploration, which is designed in a modular, extensible fashion (using CTK) and in adherence to widely accepted coding standards (e.g. ITK, VTK). MITK-DI is available both as an open source software development toolkit and as a ready-to-use in stallable application.Conclusions: The open source release of the modular MITK-DI tools will increase verifiability and comparability within the research community and will also be an important step towards bringing many of the current techniques towards clinical application.


Sign in / Sign up

Export Citation Format

Share Document