scholarly journals A hidden Markov model for lymphatic tumor progression in the head and neck

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Roman Ludwig ◽  
Bertrand Pouymayou ◽  
Panagiotis Balermpas ◽  
Jan Unkelbach

AbstractCurrently, elective clinical target volume (CTV-N) definition for head and neck squamous cell carcinoma (HNSCC) is mostly based on the prevalence of nodal involvement for a given tumor location. In this work, we propose a probabilistic model for lymphatic metastatic spread that can quantify the risk of microscopic involvement in lymph node levels (LNL) given the location of macroscopic metastases and T-category. This may allow for further personalized CTV-N definition based on an individual patient’s state of disease. We model the patient's state of metastatic lymphatic progression as a collection of hidden binary random variables that indicate the involvement of LNLs. In addition, each LNL is associated with observed binary random variables that indicate whether macroscopic metastases are detected. A hidden Markov model (HMM) is used to compute the probabilities of transitions between states over time. The underlying graph of the HMM represents the anatomy of the lymphatic drainage system. Learning of the transition probabilities is done via Markov chain Monte Carlo sampling and is based on a dataset of HNSCC patients in whom involvement of individual LNLs was reported. The model is demonstrated for ipsilateral metastatic spread in oropharyngeal HNSCC patients. We demonstrate the model's capability to quantify the risk of microscopic involvement in levels III and IV, depending on whether macroscopic metastases are observed in the upstream levels II and III, and depending on T-category. In conclusion, the statistical model of lymphatic progression may inform future, more personalized, guidelines on which LNL to include in the elective CTV. However, larger multi-institutional datasets for model parameter learning are required for that.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Roman Ludwig ◽  
Bertrand Pouymayou ◽  
Panagiotis Balermpas ◽  
Jan Unkelbach

Author(s):  
Manoj Kumar Varshney ◽  
Ankita Sharma ◽  
Komal Goel ◽  
Vajala Ravi ◽  
Gurprit Grover

2002 ◽  
Vol 1 (2) ◽  
pp. 11
Author(s):  
B. SETIAWATY

<p>This article shows the nature of dependencies between random variables in a hidden Markov model. Using these properties,we will show that the law of a hidden Markov model is completely specified by a set of four parameters which is called a representation of the hidden Markov model. </p>


Author(s):  
Jürgen Claesen ◽  
Tomasz Burzykowski

AbstractThe analysis of polygenic, phenotypic characteristics such as quantitative traits or inheritable diseases requires reliable scoring of many genetic markers covering the entire genome. The advent of high-throughput sequencing technologies provides a new way to evaluate large numbers of single nucleotide polymorphisms as genetic markers. Combining the technologies with pooling of segregants, as performed in bulk segregant analysis, should, in principle, allow the simultaneous mapping of multiple genetic loci present throughout the genome. We propose a hidden Markov-model to analyze the marker data obtained by the bulk segregant next generation sequencing. The model includes several states, each associated with a different probability of observing the same/different nucleotide in an offspring as compared to the parent. The transitions between the molecular markers imply transitions between the states of the model. After estimating the transition probabilities and state-related probabilities of nucleotide (dis)similarity, the most probable state for each SNP is selected. The most probable states can then be used to indicate which genomic regions may be likely to contain trait-related genes. The application of the model is illustrated on the data from a study of ethanol tolerance in yeast. Software is written in R. R-functions, R-scripts and documentation are available on


2012 ◽  
Vol 132 (10) ◽  
pp. 1589-1594 ◽  
Author(s):  
Hayato Waki ◽  
Yutaka Suzuki ◽  
Osamu Sakata ◽  
Mizuya Fukasawa ◽  
Hatsuhiro Kato

MIS Quarterly ◽  
2018 ◽  
Vol 42 (1) ◽  
pp. 83-100 ◽  
Author(s):  
Wei Chen ◽  
◽  
Xiahua Wei ◽  
Kevin Xiaoguo Zhu ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document