scholarly journals Dumbbell configuration of silicon adatom defects on silicene nanoribbons

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Huynh Anh Huy ◽  
Quoc Duy Ho ◽  
Truong Quoc Tuan ◽  
Ong Kim Le ◽  
Nguyen Le Hoai Phuong

AbstractUsing density functional theory (DFT), we performed theoretical investigation on structural, energetic, electronic, and magnetic properties of pure armchair silicene nanoribbons with edges terminated with hydrogen atoms (ASiNRs:H), and the absorptions of silicon (Si) atom(s) on the top of ASiNRs:H. The calculated results show that Si atoms prefer to adsorb on the top site of ASiNRs:H and form the single- and/or di-adatom defects depending on the numbers. Si absorption defect(s) change electronic and magnetic properties of ASiNRs:H. Depending on the adsorption site the band gap of ASiNRs:H can be larger or smaller. The largest band gap of 1 Si atom adsorption is 0.64 eV at site 3, the adsorption of 2 Si atoms has the largest band gap of 0.44 eV at site 1-D, while the adsorption at sites5 and 1-E turn into metallic. The formation energies of Si adsorption show that adatom defects in ASiNRs:H are more preferable than pure ASiNRs:H with silicon atom(s). 1 Si adsorption prefers to be added on the top site of a Si atom and form a single-adatom defect, while Si di-adatom defect has lower formation energy than the single-adatom and the most energetically favorable adsorption is at site 1-F. Si adsorption atoms break spin-degeneracy of ASiNRs:H lead to di-adatom defect at site 1-G has the highest spin moment. Our results suggest new ways to engineer the band gap and magnetic properties silicene materials.

2021 ◽  
Vol 7 (2) ◽  
pp. 33-41
Author(s):  
J. Basel ◽  
N. Pantha

The density functional theory (DFT) based first-principles calculations have been adopted for the study of structural, electronic and magnetic properties of pure and single Lithium (Li) atom doped germanene monolayer. Due to the higher intrinsic carrier mobilities and large spin orbit gap, germanene has great possibility of being integrated into the silicon based semiconductor industry. Different studies have been done to change the band gap value from its’ pristine zero band gap state. We have doped the single Li atom into the germanene system with the intention of tuning the band gap and other electronic and magnetic properties. Band structure calculations show pristine germanene is semi-metallic in nature whereas the Li doped system is fully metallic with the overlapping of the conduction and valance bands in the Fermi level. Under density of states (DOS) calculations, it is evident that both pristine and doped system are non-magnetic in nature with symmetric DOS plot.


Author(s):  
Mohamed Helal ◽  
H. M. El-Sayed ◽  
Ahmed A Maarouf ◽  
Mohamed Fadlallah

Motivated by the successful preparation of two-dimensional transition metal dichalcogenides (2D- TMDs) nanomeshes in the last three years, we use density functional theory (DFT) to study the structural stability, mechanical,...


Author(s):  
Anderson Soares da Costa Azevêdo ◽  
Aldilene Saraiva-Souza ◽  
Vincent Meunier ◽  
Eduardo Costa Girão

Theoretical analysis based on density functional theory is used to describe the microscopic origins of emerging electronic and magnetic properties in quasi-1D nitrogen-doped graphene nanoribbon structures with chevron-like (or wiggly-edged)...


2019 ◽  
Vol 33 (5) ◽  
pp. 1507-1512 ◽  
Author(s):  
A. Azouaoui ◽  
M. El Haoua ◽  
S. Salmi ◽  
A. El Grini ◽  
N. Benzakour ◽  
...  

AbstractIn this paper, we have studied the structural, electronic, and magnetic properties of the cubic perovskite system Mn4N using the first principles calculations based on density functional theory (DFT) with the generalized gradient approximation (GGA). The obtained data from DFT calculations are used as input data in Monte Carlo simulation with a mixed spin-5/2 and 1 Ising model to calculate the magnetic properties of this compound, such as the total, partial thermal magnetization, and the critical temperatures (TC). The obtained results show that Mn4N has a ferrimagnetic structure with two different sites of Mn in the lattice and presents a metallic behavior. The obtained TC is in good agreement with experimental results.


2020 ◽  
Vol 34 (18) ◽  
pp. 2050168
Author(s):  
Fei Feng ◽  
Fengdong Lv ◽  
Gongping Zheng ◽  
Guangtao Wang

We used the first principle of density functional theory to perform detailed calculations regarding the structure, and the electronic and magnetic properties of MX (M[Formula: see text]=[Formula: see text]Ga, In; X[Formula: see text]=[Formula: see text]S, Se, Te) nanoribbons. The armchair nanoribbons (ARNs) are nonmagnetic semiconductors, which have even or odd oscillations of bandgaps. All small-sized zigzag nanoribbons (ZRNs) were found to break the six-membered ring structure and move to the center, thereby exhibiting nonmagnetic semiconductor behavior owing to the quantum confinement effect. However, among the large ZRNs, which are all metals, MTe ZRNs are nonmagnetic; this differs from the case of graphene, MoS2 and Ti2CO2 nanoribbons. MX (M[Formula: see text]=[Formula: see text]Ga, In; X[Formula: see text]=[Formula: see text]S, Se) ZRNs exhibited ferromagnetism owing to the presence of the unpaired electrons on the metal-edge side and the magnetic moment of each pair of molecules, which was controlled by the size of the nanoribbons. The results provided a theoretical reference that can be used in the future to produce MX materials for application in low-dimensional semiconductor devices, spin electron transport devices and new magnetoresistance devices.


2017 ◽  
Vol 19 (23) ◽  
pp. 15021-15029 ◽  
Author(s):  
Yusheng Wang ◽  
Nahong Song ◽  
Min Jia ◽  
Dapeng Yang ◽  
Chikowore Panashe ◽  
...  

First principles calculations based on density functional theory were carried out to study the electronic and magnetic properties of C2N nanoribbons (C2NNRs).


Sign in / Sign up

Export Citation Format

Share Document