scholarly journals Conserved residues in the extracellular loop 2 regulate Stachel-mediated activation of ADGRG2

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abanoub A. Gad ◽  
Pedram Azimzadeh ◽  
Nariman Balenga

AbstractCleavage and dissociation of a large N-terminal fragment and the consequent unmasking of a short sequence (Stachel) remaining on the N-terminus have been proposed as mechanisms of activation of some members of the adhesion G protein-coupled receptor (aGPCR) family. However, the identity of residues that play a role in the activation of aGPCRs by the cognate Stachel remains largely unknown. Protein sequence alignments revealed a conserved stretch of residues in the extracellular loop 2 (ECL2) of all 33 members of the aGPCR family. ADGRG2, an orphan aGPCR, plays a major role in male fertility, Ewing sarcoma cell proliferation, and parathyroid cell function. We used ADGRG2 as a model aGPCR and generated mutants of the conserved residues in the ECL2 via site-directed mutagenesis. We show that tryptophan and isoleucine in the ECL2 are essential for receptor stability and surface expression in the HEK293 cells. By adjusting the receptor surface expression levels, we show that mutation of these residues of ECL2 ablates the Stachel-mediated activation of multiple signaling pathways of ADGRG2. This study provides a novel understanding of the role of the ECL2 in Stachel-mediated signaling and degradation of ADGRG2, which may lay the foundation for the rational design of therapeutics to target aGPCRs.

2021 ◽  
Author(s):  
Abanoub A. Gad ◽  
Pedram Azimzadeh ◽  
Nariman Balenga

AbstractCleavage and dissociation of a large N-terminal fragment and the consequent unmasking of a short sequence (Stachel) remaining on the N-terminus have been proposed as mechanisms of activation of some members of the adhesion G protein-coupled receptor (aGPCR) family. However, the identity of residues that play a role in the activation of aGPCRs by the cognate Stachel remains largely unknown. Protein sequence alignments revealed a conserved stretch of residues in the extracellular loop 2 (ECL2) of all 33 members of the aGPCR family. ADGRG2, an orphan aGPCR, plays a major role in male fertility, Ewing sarcoma cell proliferation, and parathyroid cell function. We used ADGRG2 as a model aGPCR and generated mutants of the conserved residues in the ECL2 via site-directed mutagenesis. We show that tryptophan and isoleucine in the ECL2 are required for receptor stability and surface expression in the HEK293 cells. By adjusting the receptor surface expression levels, we show that the ECL2 mutation ablates the Stachel-mediated activation of multiple signaling pathways of ADGRG2. This study provides a novel understanding of the role of the ECL2 in Stachel-mediated signaling and degradation of ADGRG2, which may lay the foundation for the rational design of therapeutics to target aGPCRs.


2021 ◽  
Author(s):  
Abanoub A. Gad ◽  
Pedram Azimzadeh ◽  
Nariman Balenga

Abstract Cleavage and dissociation of a large N-terminal fragment and the consequent unmasking of a short sequence (Stachel) remaining on the N-terminus have been proposed as mechanisms of activation of some members of the adhesion G protein-coupled receptor (aGPCR) family. However, the identity of residues that play a role in the activation of aGPCRs by the cognate Stachel remains largely unknown. Protein sequence alignments revealed a conserved stretch of residues in the extracellular loop 2 (ECL2) of all 33 members of the aGPCR family. ADGRG2, an orphan aGPCR, plays a major role in male fertility, Ewing sarcoma cell proliferation, and parathyroid cell function. We used ADGRG2 as a model aGPCR and generated mutants of the conserved residues in the ECL2 via site-directed mutagenesis. We show that tryptophan and isoleucine in the ECL2 are required for receptor stability and surface expression in the HEK293 cells. By adjusting the receptor surface expression levels, we show that the ECL2 mutation ablates the Stachel-mediated activation of multiple signaling pathways of ADGRG2. This study provides a novel understanding of the role of the ECL2 in Stachel-mediated signaling and degradation of ADGRG2, which may lay the foundation for the rational design of therapeutics to target aGPCRs.


2015 ◽  
Vol 54 (3) ◽  
pp. 193-204 ◽  
Author(s):  
Antara A Banerjee ◽  
Madhavi Dupakuntla ◽  
Bhakti R Pathak ◽  
Smita D Mahale

The extracellular loop 2 (EL2) of FSH receptor (FSHR) plays a pivotal role in various events downstream of FSH stimulation. Because swapping the six FSHR-specific residues in EL2 (chimeric EL2M) with those from LH/choriogonadotropin receptor resulted in impaired internalization of FSH–FSHR complex and low FSH-induced cAMP production, six substitution mutants of EL2 were generated to ascertain the contribution of individual amino acids to the effects shown by chimeric EL2M. Results revealed that L501F mainly and I505V to a lesser extent contribute to the diminished receptor function in chimeric EL2M. HEK293 cells stably expressing WT and chimeric EL2M FSHR were generated to track the fate of the receptors post FSH induction. The chimeric EL2M FSHR stable clone showed weak internalization and cAMP response similar to transiently transfected cells. Furthermore, reduced FSH-induced ERK phosphorylation was also observed. The interaction of activated chimeric EL2M and L501F FSHR with β-arrestins was weak compared with WT FSHR, thus explaining the impaired internalization of chimeric EL2M and corroborating the indispensable role of EL2 in receptor function.


2014 ◽  
Vol 58 (10) ◽  
pp. 6101-6110 ◽  
Author(s):  
Angela Corona ◽  
Francesco Saverio Di Leva ◽  
Sylvain Thierry ◽  
Luca Pescatori ◽  
Giuliana Cuzzucoli Crucitti ◽  
...  

ABSTRACTHIV-1 reverse transcriptase (RT)-associated RNase H activity is an essential function in viral genome retrotranscription. RNase H is a promising drug target for which no inhibitor is available for therapy. Diketo acid (DKA) derivatives are active site Mg2+-binding inhibitors of both HIV-1 RNase H and integrase (IN) activities. To investigate the DKA binding site of RNase H and the mechanism of action, six couples of ester and acid DKAs, derived from 6-[1-(4-fluorophenyl)methyl-1H-pyrrol-2-yl)]-2,4-dioxo-5-hexenoic acid ethyl ester (RDS1643), were synthesized and tested on both RNase H and IN functions. Most of the ester derivatives showed selectivity for HIV-1 RNase H versus IN, while acids inhibited both functions. Molecular modeling and site-directed mutagenesis studies on the RNase H domain demonstrated different binding poses for ester and acid DKAs and proved that DKAs interact with residues (R448, N474, Q475, Y501, and R557) involved not in the catalytic motif but in highly conserved portions of the RNase H primer grip motif. The ester derivative RDS1759 selectively inhibited RNase H activity and viral replication in the low micromolar range, making contacts with residues Q475, N474, and Y501. Quantitative PCR studies and fluorescence-activated cell sorting (FACS) analyses showed that RDS1759 selectively inhibited reverse transcription in cell-based assays. Overall, we provide the first demonstration that RNase H inhibition by DKAs is due not only to their chelating properties but also to specific interactions with highly conserved amino acid residues in the RNase H domain, leading to effective targeting of HIV retrotranscription in cells and hence offering important insights for the rational design of RNase H inhibitors.


2017 ◽  
Vol 474 (13) ◽  
pp. 2191-2202 ◽  
Author(s):  
Xin Fang ◽  
Jian-Xu Li ◽  
Jin-Quan Huang ◽  
You-Li Xiao ◽  
Peng Zhang ◽  
...  

Terpene synthases (TPSs) are responsible for the extremely diversified and complex structure of terpenoids. Amorpha-4,11-diene synthase (ADS) has a high (90%) fidelity in generating the sesquiterpene precursor for the biosynthesis of artemisinin, an antimalarial drug, however, little is known about how active site residues of ADS are involved in carbocation rearrangement and cyclization reactions. Here, we identify seven residues that are key to most of the catalytic steps in ADS. By structural modeling and amino acid sequence alignments of ADS with two functionally relevant sesquiterpene synthases from Artemisia annua, we performed site-directed mutagenesis and found that a single substitution, T296V, impaired the ring closure activity almost completely, and tetra-substitutions (L374Y/L404V/L405I/G439S) led to an enzyme generating 80% monocyclic bisabolyl-type sesquiterpenes, whereas a double mutant (T399L/T447G) showed compromised activity in regioselective deprotonation to yield 34.7 and 37.7% normal and aberrant deprotonation products, respectively. Notably, Thr296, Leu374, Gly439, Thr399, and Thr447, which play a major role in directing catalytic cascades, are located around conserved metal-binding motifs and function through impacting the folding of the substrate/intermediate, implying that residues surrounding the two motifs could be valuable targets for engineering TPS activity. Using this knowledge, we substantially increased amorpha-4,11-diene production in a near-additive manner by engineering Thr399 and Thr447 for product release. Our results provide new insight for the rational design of enzyme activity using synthetic biology.


2021 ◽  
Author(s):  
Yiqun Yu ◽  
Jody Pacalon ◽  
Zhenjie Ma ◽  
Lun Xu ◽  
Christine Belloir ◽  
...  

G protein-coupled olfactory receptors (ORs) enable us to detect innumerous odorants. They are also ectopically expressed, emerging as attractive drug targets. ORs can be promiscuous or highly specific, which is part of Nature′s strategy for odor discrimination. This work demonstrates that the extracellular loop 2 (ECL2) plays critical roles in OR promiscuity and specificity. Using site-directed mutagenesis and molecular modeling, we constructed 3D OR models in which ECL2 forms a lid of the orthosteric pocket. ECL2 controls the shape and the volume of the odorant-binding pocket, maintains the pocket hydrophobicity and acts as a gatekeeper of odorant binding. The interplay between the specific orthosteric pocket and the variable, less specific ECL2 controls OR specificity and promiscuity. The 3D models enabled virtual screening of new OR agonists and antagonists, exhibiting 78% hit rate in cell assays. This approach can be generalized to structure-based ligand screening for other GPCRs that lack high-resolution 3D structures.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Hui-Hui Su ◽  
Fei Peng ◽  
Pei Xu ◽  
Xiao-Ling Wu ◽  
Min-Hua Zong ◽  
...  

Abstract Background Glucaric acid, one of the aldaric acids, has been declared a “top value-added chemical from biomass”, and is especially important in the food and pharmaceutical industries. Biocatalytic production of glucaric acid from glucuronic acid is more environmentally friendly, efficient and economical than chemical synthesis. Uronate dehydrogenases (UDHs) are the key enzymes for the preparation of glucaric acid in this way, but the poor thermostability and low activity of UDH limit its industrial application. Therefore, improving the thermostability and activity of UDH, for example by semi-rational design, is a major research goal. Results In the present work, three UDHs were obtained from different Agrobacterium tumefaciens strains. The three UDHs have an approximate molecular weight of 32 kDa and all contain typically conserved UDH motifs. All three UDHs showed optimal activity within a pH range of 6.0–8.5 and at a temperature of 30 °C, but the UDH from A. tumefaciens (At) LBA4404 had a better catalytic efficiency than the other two UDHs (800 vs 600 and 530 s−1 mM−1). To further boost the catalytic performance of the UDH from AtLBA4404, site-directed mutagenesis based on semi-rational design was carried out. An A39P/H99Y/H234K triple mutant showed a 400-fold improvement in half-life at 59 °C, a 5 °C improvement in $$ {\text{T}}_{ 5 0}^{ 1 0} $$ T 50 10 value and a 2.5-fold improvement in specific activity at 30 °C compared to wild-type UDH. Conclusions In this study, we successfully obtained a triple mutant (A39P/H99Y/H234K) with simultaneously enhanced activity and thermostability, which provides a novel alternative for the industrial production of glucaric acid from glucuronic acid.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanwen Chen ◽  
Travis B. Lear ◽  
John W. Evankovich ◽  
Mads B. Larsen ◽  
Bo Lin ◽  
...  

AbstractSARS-CoV-2 (2019-nCoV) is the pathogenic coronavirus responsible for the global pandemic of COVID-19 disease. The Spike (S) protein of SARS-CoV-2 attaches to host lung epithelial cells through the cell surface receptor ACE2, a process dependent on host proteases including TMPRSS2. Here, we identify small molecules that reduce surface expression of TMPRSS2 using a library of 2,560 FDA-approved or current clinical trial compounds. We identify homoharringtonine and halofuginone as the most attractive agents, reducing endogenous TMPRSS2 expression at sub-micromolar concentrations. These effects appear to be mediated by a drug-induced alteration in TMPRSS2 protein stability. We further demonstrate that halofuginone modulates TMPRSS2 levels through proteasomal-mediated degradation that involves the E3 ubiquitin ligase component DDB1- and CUL4-associated factor 1 (DCAF1). Finally, cells exposed to homoharringtonine and halofuginone, at concentrations of drug known to be achievable in human plasma, demonstrate marked resistance to SARS-CoV-2 infection in both live and pseudoviral in vitro models. Given the safety and pharmacokinetic data already available for the compounds identified in our screen, these results should help expedite the rational design of human clinical trials designed to combat active COVID-19 infection.


Sign in / Sign up

Export Citation Format

Share Document