scholarly journals Author Correction: Dynamic consolidated bioprocessing for innovative lab-scale production of bacterial alkaline phosphatase from Bacillus paralicheniformis strain APSO

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Soad A. Abdelgalil ◽  
Nadia A. Soliman ◽  
Gaber A. Abo-Zaid ◽  
Yasser R. Abdel-Fattah

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Soad A. Abdelgalil ◽  
Nadia A. Soliman ◽  
Gaber A. Abo-Zaid ◽  
Yasser R. Abdel-Fattah

AbstractTo meet the present and forecasted market demand, bacterial alkaline phosphatase (ALP) production must be increased through innovative and efficient production strategies. Using sugarcane molasses and biogenic apatite as low-cost and easily available raw materials, this work demonstrates the scalability of ALP production from a newfound Bacillus paralicheniformis strain APSO isolated from a black liquor sample. Mathematical experimental designs including sequential Plackett–Burman followed by rotatable central composite designs were employed to select and optimize the concentrations of the statistically significant media components, which were determined to be molasses, (NH4)2NO3, and KCl. Batch cultivation in a 7-L stirred-tank bioreactor under uncontrolled pH conditions using the optimized medium resulted in a significant increase in both the volumetric and specific productivities of ALP; the alkaline phosphatase throughput 6650.9 U L−1, and µ = 0.0943 h−1; respectively, were obtained after 8 h that, ameliorated more than 20.96, 70.12 and 94 folds compared to basal media, PBD, and RCCD; respectively. However, neither the increased cell growth nor enhanced productivity of ALP was present under the pH-controlled batch cultivation. Overall, this work presents novel strategies for the statistical optimization and scaling up of bacterial ALP production using biogenic apatite.


1973 ◽  
Vol 19 (11) ◽  
pp. 1248-1249 ◽  
Author(s):  
Paul L Wolf ◽  
Elisabeth Von der Muehll ◽  
Karen Praisler

Abstract This investigation concerns identification of alkaline phosphatase production by bacterial organisms, as detected by a blue color resulting from conversion of indolyl phosphate to indigo. Coagulase-positive Staphylococcus produced alkaline phosphatase; coagulase-negative Staphylococcus did not. Serratia did not produce alkaline phosphatase; those Enterobacteriaceae we tested did. Thus, this test rapidly differentiates these organisms, diminishing the time for identification of Serratia in the clinical laboratory by 48 h. Identification of Serratia should not be ignored, because it is a life-threatening complication for certain hospitalized patients.


2020 ◽  
Author(s):  
Natalia Krawczun ◽  
Marta Bielawa ◽  
Kasjan Szemiako ◽  
Beata Lubkowska ◽  
Ireneusz Sobolewski ◽  
...  

Abstract Background:The biotechnology production of enzymes is often troubled by the toxicity of the recombinant products of cloned and expressed genes, which interferes with the recombinant hosts’ metabolism. Various approaches have been taken to overcome these limitations, exemplified by tight control of recombinant genes or secretion of recombinant proteins. An industrial approach to protein production demands maximum possible yields of biosynthesized proteins, balanced with the recombinant host’s viability. Bacterial alkaline phosphatase (BAP) from Escherichia coli ( E. coli ) is a key enzyme used in protein/antibody detection and molecular cloning. As it removes terminal phosphate from DNA, RNA and deoxyribonucleoside triphosphates, it is used to lower self-ligated vectors’ background. The precursor enzyme contains a signal peptide at the N-terminus and is secreted to the E. coli periplasm. Then, the leader is clipped off and dimers are formed upon oxidation.Results: We present a novel approach to phoA gene cloning, engineering, expression, purification and reactivation of the transiently inactivated enzyme. The recombinant bap gene was modified by replacing a secretion leader coding section with a N-terminal his6-tag, cloned and expressed in E. coli in a P BAD promoter expression vector. The expression was robust, resulting in accumulation of His6-BAP in the cytoplasm, exceeding 50% of total cellular proteins. The His6-BAP protein was harmless to the cells, as its natural toxicity was inhibited by the reducing environment within the E. coli cytoplasm, preventing formation of the active enzyme. A simple protocol based on precipitation and immobilized metal affinity chromatography (IMAC) purification yielded homogeneous protein, which was reactivated by dialysis into a redox buffer containing reduced and oxidized sulfhydryl group compounds, as well as the protein structure stabilizing cofactors Zn 2+ , Mg 2+ and phosphate. The reconstituted His6-BAP exhibited high activity and was used to develop an efficient protocol for all types of DNA termini, including problematic ones (blunt, 3’-protruding).Conclusions: The developed method appears well suited for the industrial production of ultrapure BAP. Further, the method of transient inactivation of secreted toxic enzymes by conducting their biosynthesis in an inactive state in the cytoplasm, followed by in vitro reactivation, can be generally applied to other problematic proteins.


Sign in / Sign up

Export Citation Format

Share Document