scholarly journals Evolutionary design of molecules based on deep learning and a genetic algorithm

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Youngchun Kwon ◽  
Seokho Kang ◽  
Youn-Suk Choi ◽  
Inkoo Kim

AbstractEvolutionary design has gained significant attention as a useful tool to accelerate the design process by automatically modifying molecular structures to obtain molecules with the target properties. However, its methodology presents a practical challenge—devising a way in which to rapidly evolve molecules while maintaining their chemical validity. In this study, we address this limitation by developing an evolutionary design method. The method employs deep learning models to extract the inherent knowledge from a database of materials and is used to effectively guide the evolutionary design. In the proposed method, the Morgan fingerprint vectors of seed molecules are evolved using the techniques of mutation and crossover within the genetic algorithm. Then, a recurrent neural network is used to reconstruct the final fingerprints into actual molecular structures while maintaining their chemical validity. The use of deep neural network models to predict the properties of these molecules enabled more versatile and efficient molecular evaluations to be conducted by using the proposed method repeatedly. Four design tasks were performed to modify the light-absorbing wavelengths of organic molecules from the PubChem library.

2021 ◽  
pp. 188-198

The innovations in advanced information technologies has led to rapid delivery and sharing of multimedia data like images and videos. The digital steganography offers ability to secure communication and imperative for internet. The image steganography is essential to preserve confidential information of security applications. The secret image is embedded within pixels. The embedding of secret message is done by applied with S-UNIWARD and WOW steganography. Hidden messages are reveled using steganalysis. The exploration of research interests focused on conventional fields and recent technological fields of steganalysis. This paper devises Convolutional neural network models for steganalysis. Convolutional neural network (CNN) is one of the most frequently used deep learning techniques. The Convolutional neural network is used to extract spatio-temporal information or features and classification. We have compared steganalysis outcome with AlexNet and SRNeT with same dataset. The stegnalytic error rates are compared with different payloads.


2021 ◽  
Author(s):  
Pengfei Zuo ◽  
Yu Hua ◽  
Ling Liang ◽  
Xinfeng Xie ◽  
Xing Hu ◽  
...  

2020 ◽  
Vol 147 (3) ◽  
pp. 1834-1841 ◽  
Author(s):  
Ming Zhong ◽  
Manuel Castellote ◽  
Rahul Dodhia ◽  
Juan Lavista Ferres ◽  
Mandy Keogh ◽  
...  

Author(s):  
Osama A. Osman ◽  
Hesham Rakha

Distracted driving (i.e., engaging in secondary tasks) is an epidemic that threatens the lives of thousands every year. Data collected from vehicular sensor technologies and through connectivity provide comprehensive information that, if used to detect driver engagement in secondary tasks, could save thousands of lives and millions of dollars. This study investigates the possibility of achieving this goal using promising deep learning tools. Specifically, two deep neural network models (a multilayer perceptron neural network model and a long short-term memory networks [LSTMN] model) were developed to identify three secondary tasks: cellphone calling, cellphone texting, and conversation with adjacent passengers. The Second Strategic Highway Research Program Naturalistic Driving Study (SHRP 2 NDS) time series data, collected using vehicle sensor technology, were used to train and test the model. The results show excellent performance for the developed models, with a slight improvement for the LSTMN model, with overall classification accuracies ranging between 95 and 96%. Specifically, the models are able to identify the different types of secondary tasks with high accuracies of 100% for calling, 96%–97% for texting, 90%–91% for conversation, and 95%–96% for the normal driving. Based on this performance, the developed models improve on the results of a previous model developed by the author to classify the same three secondary tasks, which had an accuracy of 82%. The model is promising for use in in-vehicle driving assistance technology to report engagement in unlawful tasks or alert drivers to take over control in level 1 and 2 automated vehicles.


Author(s):  
A. Saravanan ◽  
J. Jerald ◽  
A. Delphin Carolina Rani

AbstractThe objective of the paper is to develop a new method to model the manufacturing cost–tolerance and to optimize the tolerance values along with its manufacturing cost. A cost–tolerance relation has a complex nonlinear correlation among them. The property of a neural network makes it possible to model the complex correlation, and the genetic algorithm (GA) is integrated with the best neural network model to optimize the tolerance values. The proposed method used three types of neural network models (multilayer perceptron, backpropagation network, and radial basis function). These network models were developed separately for prismatic and rotational parts. For the construction of network models, part size and tolerance values were used as input neurons. The reference manufacturing cost was assigned as the output neuron. The qualitative production data set was gathered in a workshop and partitioned into three files for training, testing, and validation, respectively. The architecture of the network model was identified based on the best regression coefficient and the root-mean-square-error value. The best network model was integrated into the GA, and the role of genetic operators was also studied. Finally, two case studies from the literature were demonstrated in order to validate the proposed method. A new methodology based on the neural network model enables the design and process planning engineers to propose an intelligent decision irrespective of their experience.


Recently, the stock market prediction has become one of the essential application areas of time-series forecasting research. The successful prediction of the stock market can be better guided to the investors to maximize their profit and to minimize the risk of investment. The stock market data are very much complex, non-linear and dynamic. Due to this reason, still, it is a challenging task. In recent time, deep learning method has become one of the most popular machine learning methods for time-series forecasting due to their temporal feature extraction capabilities. In this paper, we have proposed a novel Deep Learning-based Integrated Stacked Model (DISM) that integrates both the 1D Convolution neural network and LSTM recurrent neural network to find the spatial and temporal features from the stock market data. Our proposed DISM is applied to forecast the stock market. Here, we have also compared our proposed DISM with the single structured stacked LSTM, and 1D Convolution neural network models, and some other statistical models. We have observed that our proposed DISM produces better results in terms of accuracy and stability.


2021 ◽  
Vol 11 (15) ◽  
pp. 7147
Author(s):  
Jinmo Gu ◽  
Jinhyuk Na ◽  
Jeongeun Park ◽  
Hayoung Kim

Outbound telemarketing is an efficient direct marketing method wherein telemarketers solicit potential customers by phone to purchase or subscribe to products or services. However, those who are not interested in the information or offers provided by outbound telemarketing generally experience such interactions negatively because they perceive telemarketing as spam. In this study, therefore, we investigate the use of deep learning models to predict the success of outbound telemarketing for insurance policy loans. We propose an explainable multiple-filter convolutional neural network model called XmCNN that can alleviate overfitting and extract various high-level features using hundreds of input variables. To enable the practical application of the proposed method, we also examine ensemble models to further improve its performance. We experimentally demonstrate that the proposed XmCNN significantly outperformed conventional deep neural network models and machine learning models. Furthermore, a deep learning ensemble model constructed using the XmCNN architecture achieved the lowest false positive rate (4.92%) and the highest F1-score (87.47%). We identified important variables influencing insurance policy loan prediction through the proposed model, suggesting that these factors should be considered in practice. The proposed method may increase the efficiency of outbound telemarketing and reduce the spam problems caused by calling non-potential customers.


2019 ◽  
Author(s):  
Lucas Fontes Buzuti ◽  
Carlos Eduardo Thomaz

The goal of this paper is to implement and compare two unsupervised models of deep learning: Autoencoder and Convolutional Autoencoder. These neural network models have been trained to learn regularities in well-framed face images with different facial expressions. The Autoencoder's basic topology is addressed here, composed of encoding and decoding multilayers. This paper approaches these automatic codings using multivariate statistics to visually understand the bottleneck differences between the fully-connected and convolutional layers and the corresponding importance of the dropout strategy when applied in a model.


2020 ◽  
Author(s):  
Wen-Hsien Chang ◽  
Han-Kuei Wu ◽  
Lun-chien Lo ◽  
William W. L. Hsiao ◽  
Hsueh-Ting Chu ◽  
...  

Abstract Background: Traditional Chinese medicine (TCM) describes physiological and pathological changes inside and outside the human body by the application of four methods of diagnosis. One of the four methods, tongue diagnosis, is widely used by TCM physicians, since it allows direct observations that prevent discrepancies in the patient’s history and, as such, provides clinically important, objective evidence. The clinical significance of tongue features has been explored in both TCM and modern medicine. However, TCM physicians may have different interpretations of the features displayed by the same tongue, and therefore intra- and inter-observer agreements are relatively low. If an automated interpretation system could be developed, more consistent results could be obtained, and learning could also be more efficient. This study will apply a recently developed deep learning method to the classification of tongue features, and indicate the regions where the features are located.Methods: A large number of tongue photographs with labeled fissures were used. Transfer learning was conducted using the ImageNet-pretrained ResNet50 model to determine whether tongue fissures were identified on a tongue photograph. Often, the neural network model lacks interpretability, and users cannot understand how the model determines the presence of tongue fissures. Therefore, Gradient-weighted Class Activation Mapping (Grad-CAM) was also applied to directly mark the tongue features on the tongue image. Results: Only 6 epochs were trained in this study and no graphics processing units (GPUs) were used. It took less than 4 minutes for each epoch to be trained. The correct rate for the test set was approximately 70%. After the model training was completed, Grad-CAM was applied to localize tongue fissures in each image. The neural network model not only determined whether tongue fissures existed, but also allowed users to learn about the tongue fissure regions.Conclusions: This study demonstrated how to apply transfer learning using the ImageNet-pretrained ResNet50 model for the identification and localization of tongue fissures and regions. The neural network model built in this study provided interpretability and intuitiveness, (often lacking in general neural network models), and improved the feasibility for clinical application.


Sign in / Sign up

Export Citation Format

Share Document