scholarly journals A scaffold-free approach to cartilage tissue generation using human embryonic stem cells

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lauren A. Griffith ◽  
Katherine M. Arnold ◽  
Bram G. Sengers ◽  
Rahul S. Tare ◽  
Franchesca D. Houghton

AbstractArticular cartilage functions as a shock absorber and facilitates the free movement of joints. Currently, there are no therapeutic drugs that promote the healing of damaged articular cartilage. Limitations associated with the two clinically relevant cell populations, human articular chondrocytes and mesenchymal stem cells, necessitate finding an alternative cell source for cartilage repair. Human embryonic stem cells (hESCs) provide a readily accessible population of self-renewing, pluripotent cells with perceived immunoprivileged properties for cartilage generation. We have developed a robust method to generate 3D, scaffold-free, hyaline cartilage tissue constructs from hESCs that are composed of numerous chondrocytes in lacunae, embedded in an extracellular matrix containing Type II collagen, sulphated glycosaminoglycans and Aggrecan. The elastic (Young’s) modulus of the hESC-derived cartilage tissue constructs (0.91 ± 0.08 MPa) was comparable to full-thickness human articular cartilage (0.87 ± 0.09 MPa). Moreover, we have successfully scaled up the size of the scaffold-free, 3D hESC-derived cartilage tissue constructs to between 4.5 mm and 6 mm, thus enhancing their suitability for clinical application.

2017 ◽  
Vol 71 (1) ◽  
pp. 0-0 ◽  
Author(s):  
Wiktoria Maria Suchorska ◽  
Ewelina Augustyniak ◽  
Magdalena Richter ◽  
Magdalena Łukjanow ◽  
Violetta Filas ◽  
...  

Human articular cartilage has a poor regenerative capacity. This often results in the serious joint disease- osteoarthritis (OA) that is characterized by cartilage degradation. An inability to self-repair provided extensive studies on AC regeneration. The cell-based cartilage tissue engineering is a promising approach for cartilage regeneration. So far, numerous cell types have been reported to show chondrogenic potential, among others human embryonic stem cells (hESCs).


2010 ◽  
Vol 190 (1) ◽  
pp. 63-70 ◽  
Author(s):  
Gabriel Nistor ◽  
Magdalene J. Seiler ◽  
Fengrong Yan ◽  
David Ferguson ◽  
Hans S. Keirstead

2016 ◽  
Vol 01 (03) ◽  
pp. 201-208 ◽  
Author(s):  
Malini Krishnamoorthy ◽  
Brian Gerwe ◽  
Jamie Heimburg-Molinaro ◽  
Rachel Nash ◽  
Jagan Arumugham ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document