scholarly journals Suppression of autophagy promotes fibroblast activation in p53-deficient colorectal cancer cells

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takanori Inoue ◽  
Yoshito Hayashi ◽  
Yoshiki Tsujii ◽  
Shunsuke Yoshii ◽  
Akihiko Sakatani ◽  
...  

AbstractDeficiency of p53 in cancer cells activates the transformation of normal tissue fibroblasts into carcinoma-associated fibroblasts; this promotes tumor progression through a variety of mechanisms in the tumor microenvironment. The role of autophagy in carcinoma-associated fibroblasts in tumor progression has not been elucidated. We aimed to clarify the significance of autophagy in fibroblasts, focusing on the TP53 status in co-cultured human colorectal cancer cell lines (TP53-wild-type colon cancer, HCT116; TP53-mutant colon cancer, HT29; fibroblast, CCD-18Co) in vitro. Autophagy in fibroblasts was significantly suppressed in association with ACTA2, CXCL12, TGFβ1, VEGFA, FGF2, and PDGFRA mRNA levels, when co-cultured with p53-deficient HCT116sh p53 cells. Exosomes isolated from the culture media of HCT116sh p53 cells significantly suppressed autophagy in fibroblasts via inhibition of ATG2B. Exosomes derived from TP53-mutant HT29 cells also suppressed autophagy in fibroblasts. miR-4534, extracted from the exosomes of HCT116sh p53 cells, suppressed ATG2B in fibroblasts. In conclusion, a loss of p53 function in colon cancer cells promotes the activation of surrounding fibroblasts through the suppression of autophagy. Exosomal miRNAs derived from cancer cells may play a pivotal role in the suppression of autophagy.

2021 ◽  
Author(s):  
Takanori Inoue ◽  
Yoshito Hayashi ◽  
Yoshiki Tsujii ◽  
Shunsuke Yoshii ◽  
Akihiko Sakatani ◽  
...  

Abstract Deficiency of p53 in cancer cells activates the transformation of normal tissue fibroblasts into carcinoma-associated fibroblasts; this promotes tumor progression through a variety of mechanisms in the tumor microenvironment. The role of autophagy in carcinoma-associated fibroblasts in tumor progression has not been elucidated. We aimed to clarify the significance of autophagy in fibroblasts, focusing on the TP53 status in co-cultured human colorectal cancer cell lines (TP53-wild-type colon cancer, HCT116; TP53-mutant colon cancer, HT29; fibroblast, CCD-18Co) in vitro. Autophagy in fibroblasts was significantly suppressed in association with ACTA2, CXCL12, TGFβ1, VEGFA, FGF2, and PDGFA mRNA levels, when co-cultured with p53-deficient HCT116sh p53 cells. Exosomes isolated from the culture media of HCT116sh p53 cells significantly suppressed autophagy in fibroblasts via inhibition of ATG2B. Exosomes derived from TP53-mutant HT29 cells also suppressed autophagy in fibroblasts. miR-4534, extracted from the exosomes of HCT116sh p53 cells, suppressed ATG2B in fibroblasts. In conclusion, a loss of p53 function in colon cancer cells promotes the activation of surrounding fibroblasts through the suppression of autophagy. Exosomal miRNAs derived from cancer cells may play a pivotal role in the suppression of autophagy.


2020 ◽  
Author(s):  
TAKUYA IWAMA ◽  
Mikihiro Fujiya ◽  
Hiroaki Konishi ◽  
Hiroki Tanaka ◽  
Yuki Murakami ◽  
...  

Abstract BACKGROUND: Colorectal cancers develop through several pathways, including the adenoma–carcinoma sequence and colitis-associated carcinogenesis. An altered intestinal microflora has been reported to be associated with the development and progression of colorectal cancer via these pathways. We identified Lactobacillus casei -derived ferrichrome as a mediator of the bacterial anti-tumor effect of colorectal cancer cells through the upregulation of DDIT3. In this study, we investigated the anti-tumor effects of ferrichrome on precancerous conditions and cancer cells associated with sporadic as well as colitis-associated colorectal cancer. METHODS: SRB and MTT assays were performed to assess growth inhibition in vitro . Eighteen organoids were prepared from biopsy specimens obtained by colonoscopy. An AOM-DSS carcinogenesis model and xenograft model of colorectal cancer cells were generated for the assessment of the tumor suppressive effect of ferrichrome in vivo . RESULTS: Ferrichrome inhibited the cell growth of colorectal cancer cells in vitro and in in vivo xenograft models. Ferrichrome exerted a strong tumor-suppressive effect that was superior to that of currently available anti-tumor agents, including 5-FU and cisplatin, both in vitro and in vivo . The tumor-suppressive effect of the combination of ferrichrome and 5-FU was superior to that of single treatment with either drug. The tumor suppressive effects of ferrichrome were confirmed through the upregulation of DDIT3 in patient-derived organoids of adenoma and carcinoma. Ferrichrome inhibited the tumor progression in the AOM-DSS model while exhibiting no anti-inflammatory effect in the DSS-colitis model, suggesting that ferrichrome inhibited cancer cells, but not a precancerous condition, via the colitis-associated pathway. CONCLUSIONS: Ferrichrome exerts a tumor suppressive effect on precancerous conditions and cancer cells associated with sporadic as well as colitis-associated colorectal cancer. The anti-tumor effect of ferrichrome was mediated by the upregulation of DDIT3, and was superior to that of 5-FU or cisplatin. These results suggest that Lactobacillus brevis -derived ferrichrome may be a candidate anti-tumor drug for the treatment of colorectal neoplasms.


2019 ◽  
Vol 18 (15) ◽  
pp. 2149-2155
Author(s):  
Danial Seyfi ◽  
Seyed B. Behzad ◽  
Mohammad Nabiuni ◽  
Kazem Parivar ◽  
Mohammad Tahmaseb ◽  
...  

Objective: Metastasis phenotype is considered as the main challenge in colon cancer therapeutic methods. Furthermore, the side effects of conventional colorectal cancer treatment methods have attracted a lot of attention into natural ingredients. The aim of the study was to assess the molecular mechanism of verbascoside as natural bio-compound in human HT29 colon cancer cells. Methods: HT29 cells were cultured in RPMI-1640 medium containing 10% FBS and 1% penicillin/ streptomycin at 37°C and 5% CO2. HT-29 cells were treated with different concentrations of verbascoside (10, 20, 30, 40, 50, 70, 100 µg/ml) for 24 hours, then MTT assay was used to calculate 50% inhibitory concentration. The migration of the colon cancer cells was evaluated by scratch assay. To evaluate involved antiproliferative mechanism, Rac-1 (Ras-related C3 botulinum toxin substrate 1) and HIF-1α (hypoxia-inducible factor-1α) related gene expression were evaluated by Real Time PCR. Results: The results showed that verbascoside inhibited HT29 colon cancer cell proliferation dose-dependently and IC50 was evaluated as 50 μg/ml (***P<0.001). The results of wound healing assay demonstrated verbascoside decreased cell migration in a dose dependent manner. In the IC50 treated HT29 cells metastatic progression was significantly suppressed as **P<0.01. The results of Real Time PCR showed an attenuating effect of verbascoside on Rac-1, Zeb-1 (zinc finger E-box binding homeobox 1), Arp2 (Actin-Related Proteins), Pak1 (p21 (RAC1) activated kinase 1), VEGF (Vascular endothelial growth factor) and HIF-1α as Epithelial-Mesenchymal Transition markers. The down regulation of mRNA levels was Rac-1= 15.38, HIF-1 α = 16.66, Pak-1, Arp-2= 6.25, VEGF=24.39, Zeb-1=35.71 in HT29 cells treated with IC50 concentration of verbascoside. Conclusion: Colorectal cancer cells induce Rac-1 and HIF-1α overexpression which plays an important role in the activation and progression of cell motility, angiogenesis and metastasis. Overall results showed that verbascoside elucidated significant anti-metastatic and anti-invasion activities through suppression of Rac-1, HIF-1α, and Zeb-1 signaling pathway and it may be a suitable candidate to overwhelm colon cancer metastatic phenotype.


2020 ◽  
Author(s):  
TAKUYA IWAMA ◽  
Mikihiro Fujiya ◽  
Hiroaki Konishi ◽  
Hiroki Tanaka ◽  
Yuki Murakami ◽  
...  

Abstract BACKGROUND: Colorectal cancers develop through several pathways, including the adenoma–carcinoma sequence and colitis-associated carcinogenesis. An altered intestinal microflora has been reported to be associated with the development and progression of colorectal cancer via these pathways. We identified Lactobacillus casei-derived ferrichrome as a mediator of the bacterial anti-tumor effect of colorectal cancer cells through the upregulation of DDIT3. In this study, we investigated the anti-tumor effects of ferrichrome on precancerous conditions and cancer cells associated with sporadic as well as colitis-associated colorectal cancer.METHODS: SRB and MTT assays were performed to assess growth inhibition in vitro. Eighteen organoids were prepared from biopsy specimens obtained by colonoscopy. An AOM-DSS carcinogenesis model and xenograft model of colorectal cancer cells were generated for the assessment of the tumor suppressive effect of ferrichrome in vivo. RESULTS: Ferrichrome inhibited the cell growth of colorectal cancer cells in vitro and in in vivo xenograft models. Ferrichrome exerted a strong tumor-suppressive effect that was superior to that of currently available anti-tumor agents, including 5-FU and cisplatin, both in vitro and in vivo. The tumor-suppressive effect of the combination of ferrichrome and 5-FU was superior to that of single treatment with either drug. The tumor suppressive effects of ferrichrome were confirmed through the upregulation of DDIT3 in patient-derived organoids of adenoma and carcinoma. Ferrichrome inhibited the tumor progression in the AOM-DSS model while exhibiting no anti-inflammatory effect in the DSS-colitis model, suggesting that ferrichrome inhibited cancer cells, but not a precancerous condition, via the colitis-associated pathway.CONCLUSIONS: Ferrichrome exerts a tumor suppressive effect on precancerous conditions and cancer cells associated with sporadic as well as colitis-associated colorectal cancer. The anti-tumor effect of ferrichrome was mediated by the upregulation of DDIT3, and was superior to that of 5-FU or cisplatin. These results suggest that Lactobacillus brevis-derived ferrichrome may be a candidate anti-tumor drug for the treatment of colorectal neoplasms.


2018 ◽  
Vol 65 (3) ◽  
Author(s):  
Edyta Korbut ◽  
Agata Ptak-Belowska ◽  
Tomasz Brzozowski

Selenium compounds have been implicated as anticancer agents; however, the mechanism of their inhibitory action against cancer development has not been extensively investigated. The constitutive activation of the Wnt/β-catenin pathway is a central event in colorectal carcinogenesis. In this pathway, the excessive cell proliferation is initiated by the generation of β-catenin followed by overexpression of proto-oncogenes such as c-Myc. It is believed that under physiological conditions the level of c-Myc is efficiently controlled by accessibility of β-catenin protein through the process of phosphorylation by glycogen synthase kinase 3β (GSK-3β). Here, we determined whether selenomethionine (SeMet) can inhibit cell growth and affect the Wnt/β-catenin pathway in HT-29 human colorectal cancer cells in vitro. The effective cytotoxic doses of SeMet have been selected after 48 h of incubation of this compound with colorectal cancer HT-29 cell line. The MTT assay was used to assess cell viability and the protein and mRNA levels of β-catenin and c-Myc were determined by Western blotting and qPCR, respectively. The SeMet potently inhibited growth of HT-29 cells, significantly decreased the β-catenin protein and mRNA concentration, down-regulated the c-Myc gene expression and up-regulated pro-apoptotic Bax protein expression. Moreover, SeMet increased the level of GSK-3β phosphorylated at serine 9 (S9) and significantly increased the level of β-catenin phosphorylated at S33 and S37. We conclude that SeMet suppresses the growth of HT-29 colorectal cancer cells by the mechanism linked to the Wnt/β-catenin pathway, however, the degradation of β-catenin may occur independently of GSK-3β catalytic activity and its phosphorylation status.


2021 ◽  
Vol 11 ◽  
Author(s):  
Şeyda Berk ◽  
Joseph A. M. J. L. Janssen ◽  
Peter M. van Koetsveld ◽  
Fadime Dogan ◽  
Naci Değerli ◽  
...  

There are only a few experimental studies which have investigated effects of glucose alone, and glucose in combination with insulin/insulin-like growth factors (IGF) on the growth of colon cancer. In the present study, we studied in vitro in human colorectal cancer cells originating from four Dukes’ stages of colorectal cancer the effects of glucose, insulin and IGFs on proliferation, migration, cell cycle progression and gene expression of the IGF system. Growth of colon cancer cells originating from a Dukes’ stage A was glucose-dependent, whereas growth of cancer cells from Dukes’ stage B, C and D was glucose-independent. Stimulatory effects of insulin and IGFs on cell growth were observed only in colon cancer cells originating from Dukes’ stage C and D. IGF-II stimulated migration in Dukes’ stage B cells only. The growth stimulatory effects in Dukes’ stage C and D colorectal cancer cells were accompanied by G2/M arrest and associated with an increased IGF-IR/IGF-II receptor ratio. In conclusion, our in vitro data suggest that the stimulating effects of glucose, IGFs and insulin on proliferation differ between colorectal cancer cells from early and late Dukes’ stages. Stimulatory effects of glucose on proliferation appear predominantly present in stage Dukes’ stage A colorectal cancer cells, while in contrast growth factor-mediated stimulation of cell proliferation is more pronounced in Dukes’ late stage (metastasized) colorectal cancer cells. Moreover, our study suggests that a stringent glucose control may be important to control tumor growth in early stages of colorectal cancer, while inhibition of the endocrine actions of the IGFs and insulin become more important in the late (metastasized) stages of colorectal cancer to restrain growth of colon cancer cells.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Takuya Iwama ◽  
Mikihiro Fujiya ◽  
Hiroaki Konishi ◽  
Hiroki Tanaka ◽  
Yuki Murakami ◽  
...  

Abstract Background Colorectal cancers develop through several pathways, including the adenoma–carcinoma sequence and colitis-associated carcinogenesis. An altered intestinal microflora has been reported to be associated with the development and progression of colorectal cancer via these pathways. We identified Lactobacillus casei-derived ferrichrome as a mediator of the bacterial anti-tumor effect of colorectal cancer cells through the upregulation of DDIT3. In this study, we investigated the anti-tumor effects of ferrichrome on precancerous conditions and cancer cells associated with sporadic as well as colitis-associated colorectal cancer. Methods SRB and MTT assays were performed to assess growth inhibition in vitro. Eighteen organoids were prepared from biopsy specimens obtained by colonoscopy. An AOM-DSS carcinogenesis model and xenograft model of colorectal cancer cells were generated for the assessment of the tumor suppressive effect of ferrichrome in vivo. Results Ferrichrome inhibited the cell growth of colorectal cancer cells in vitro and in in vivo xenograft models. Ferrichrome exerted a strong tumor-suppressive effect that was superior to that of currently available anti-tumor agents, including 5-FU and cisplatin, both in vitro and in vivo. The tumor-suppressive effect of the combination of ferrichrome and 5-FU was superior to that of single treatment with either drug. The tumor suppressive effects of ferrichrome were confirmed through the upregulation of DDIT3 in patient-derived organoids of adenoma and carcinoma. Ferrichrome inhibited the tumor progression in the AOM-DSS model while exhibiting no anti-inflammatory effect in the DSS-colitis model, suggesting that ferrichrome inhibited cancer cells, but not a precancerous condition, via the colitis-associated pathway. Conclusions Ferrichrome exerts a tumor suppressive effect on precancerous conditions and cancer cells associated with sporadic as well as colitis-associated colorectal cancer. The anti-tumor effect of ferrichrome was mediated by the upregulation of DDIT3, and was superior to that of 5-FU or cisplatin. These results suggest that Lactobacillus brevis-derived ferrichrome may be a candidate anti-tumor drug for the treatment of colorectal neoplasms.


2020 ◽  
Author(s):  
TAKUYA IWAMA ◽  
Mikihiro Fujiya ◽  
Hiroaki Konishi ◽  
Hiroki Tanaka ◽  
Yuki Murakami ◽  
...  

Abstract BACKGROUND: Colorectal cancers develop through several pathways, including the adenoma–carcinoma sequence and colitis-associated carcinogenesis. An altered intestinal microflora has been reported to be associated with the development and progression of colorectal cancer via these pathways. We identified Lactobacillus casei-derived ferrichrome as a mediator of the bacterial anti-tumor effect of colorectal cancer cells through the upregulation of DDIT3. In this study, we investigated the anti-tumor effects of ferrichrome on precancerous conditions and cancer cells associated with sporadic as well as colitis-associated colorectal cancer.METHODS: SRB and MTT assays were performed to assess growth inhibition in vitro. Eighteen organoids were prepared from biopsy specimens obtained by colonoscopy. An AOM-DSS carcinogenesis model and xenograft model of colorectal cancer cells were generated for the assessment of the tumor suppressive effect of ferrichrome in vivo. RESULTS: Ferrichrome inhibited the cell growth of colorectal cancer cells in vitro and in in vivo xenograft models. Ferrichrome exerted a strong tumor-suppressive effect that was superior to that of currently available anti-tumor agents, including 5-FU and cisplatin, both in vitro and in vivo. The tumor-suppressive effect of the combination of ferrichrome and 5-FU was superior to that of single treatment with either drug. The tumor suppressive effects of ferrichrome were confirmed through the upregulation of DDIT3 in patient-derived organoids of adenoma and carcinoma. Ferrichrome inhibited the tumor progression in the AOM-DSS model while exhibiting no anti-inflammatory effect in the DSS-colitis model, suggesting that ferrichrome inhibited cancer cells, but not a precancerous condition, via the colitis-associated pathway.CONCLUSIONS: Ferrichrome exerts a tumor suppressive effect on precancerous conditions and cancer cells associated with sporadic as well as colitis-associated colorectal cancer. The anti-tumor effect of ferrichrome was mediated by the upregulation of DDIT3, and was superior to that of 5-FU or cisplatin. These results suggest that Lactobacillus brevis-derived ferrichrome may be a candidate anti-tumor drug for the treatment of colorectal neoplasms.


2007 ◽  
Vol 2 (2) ◽  
pp. 1934578X0700200 ◽  
Author(s):  
Mohammad Shoeb ◽  
Sezgin Celik ◽  
Lutfun Nahar ◽  
Stephen M. MacManus ◽  
Paul Kong-Thu-lin ◽  
...  

The cytotoxic activity of two salonitenolide derivatives, 8-O-(3-hydroxy-2-methylpropanoyl)-salonitenolide (or arctiopicrin, 1) and 8-O-(4-hydroxy-3-methylbutanoyl)-salonitenolide (2), isolated and identified from the methanol extract of the aerial parts of Centaurea gigantea, was assessed by the MTT cytotoxicity assay using the colon cancer cell line, CaCo-2. The IC50 values for 1 and 2 were found to be 8.5 and 26.4 μM, respectively.


Sign in / Sign up

Export Citation Format

Share Document