scholarly journals Inhibitory effect of selenomethionine on carcinogenesis in the model of human colorectal cancer in vitro and its link to the Wnt/β-catenin pathway.

2018 ◽  
Vol 65 (3) ◽  
Author(s):  
Edyta Korbut ◽  
Agata Ptak-Belowska ◽  
Tomasz Brzozowski

Selenium compounds have been implicated as anticancer agents; however, the mechanism of their inhibitory action against cancer development has not been extensively investigated. The constitutive activation of the Wnt/β-catenin pathway is a central event in colorectal carcinogenesis. In this pathway, the excessive cell proliferation is initiated by the generation of β-catenin followed by overexpression of proto-oncogenes such as c-Myc. It is believed that under physiological conditions the level of c-Myc is efficiently controlled by accessibility of β-catenin protein through the process of phosphorylation by glycogen synthase kinase 3β (GSK-3β). Here, we determined whether selenomethionine (SeMet) can inhibit cell growth and affect the Wnt/β-catenin pathway in HT-29 human colorectal cancer cells in vitro. The effective cytotoxic doses of SeMet have been selected after 48 h of incubation of this compound with colorectal cancer HT-29 cell line. The MTT assay was used to assess cell viability and the protein and mRNA levels of β-catenin and c-Myc were determined by Western blotting and qPCR, respectively. The SeMet potently inhibited growth of HT-29 cells, significantly decreased the β-catenin protein and mRNA concentration, down-regulated the c-Myc gene expression and up-regulated pro-apoptotic Bax protein expression. Moreover, SeMet increased the level of GSK-3β phosphorylated at serine 9 (S9) and significantly increased the level of β-catenin phosphorylated at S33 and S37. We conclude that SeMet suppresses the growth of HT-29 colorectal cancer cells by the mechanism linked to the Wnt/β-catenin pathway, however, the degradation of β-catenin may occur independently of GSK-3β catalytic activity and its phosphorylation status.

2020 ◽  

Objectives: This study aimed to investigate the potential function of miR-214 in the apoptosis induction by targeting p53 in human colorectal cancer cells (CRC) in combination with doxorubicin (DOX). Methods: miR-214 mimics were transfected to HT-29 CRC cells. Following that, the transfected cells were treated with DOX. Cell viability, apoptosis, and migration were evaluated by MTT, flow cytometry, and scratch-wound motility assays, respectively. Furthermore, the expression level of miR-214 and p53 was evaluated by qRT-PCR. Results: miR-214 transfection significantly inhibited the cell proliferation rate (P<0.05), induced apoptosis (P<0.05), and harnessed migration (P<0.05) in the HT-29 cells after 48 h. Furthermore, more effectiveness was observed in combination with DOX. Additionally, miR-214 transfection led to a reduction in p53 expression offering that it might be a potential target for miR-214. Conclusion: In conclusion, miR-214 sensitizes HT-29 cells to doxorubicin by targeting p53 indicating the significant role of this miRNA in colorectal cancer chemotherapy.


2019 ◽  
Vol 12 (2) ◽  
pp. 629-638
Author(s):  
N. N. Bahari ◽  
S. Y. N. Jamaludin ◽  
A. H. Jahidin ◽  
M. N. Zahary ◽  
A. B. Mohd Hilmi

The transient receptor potential vanilloid member 4 (TRPV4) is a non-selective calcium (Ca2+)-permeable channel which is widely expressed in different types of tissues including the lungs, liver, kidneys and salivary gland. TRPV4 has been shown to serve as a cellular sensor where it is involved in processes such as osmoregulation, cell volume regulation and thermoregulation. Emerging evidence suggests that TRPV4 also plays important roles in several aspects of cancer progression. Despite the reported roles of TRPV4 in several forms of cancers, the role of TRPV4 in human colorectal cancer remains largely unexplored. In the present study, we sought to establish the potential role of TRPV4 in colorectal cancer by assessing TRPV4 expression levels and investigating whether TRPV4 pharmacological modulation may alter cell proliferation, cell cycle and cell death in colorectal cancer cells. Quantitative real-time PCR analysis revealed that TRPV4 mRNA levels were significantly lower in HT-29 cells than normal colon CCD-18Co cells. However, TRPV4 mRNA was absent in HCT-116 cells. Pharmacological activation of TRPV4 with GSK1016790A significantly enhanced the proliferation of HT-29 cells while TRPV4 inhibition using RN 1734 decreased their proliferation. Increased proliferation in GSK1016790A-treated HT-29 cells was attenuated by co-treatment with RN 1734. Pharmacological modulation of TRPV4 had no effect on the cell cycle progression but promoted cell death in HT-29 cells. Taken together, these findings suggest differential TRPV4 expression levels in human colorectal cancer cells and that pharmacological modulation of TRPV4 produces distinct effects on the proliferation and induces cell death in HT-29 cells.


2019 ◽  
Author(s):  
JIachi Ma ◽  
Shoukai Zhang ◽  
Danru Liang ◽  
Lei Li ◽  
Jun Du ◽  
...  

Abstract Background: To better explore the underlying mechanism of liver metastatic formation by placenta-specific protein 1 (PLAC1) in human colorectal cancer, we investigated the proliferation, invasion and angiogenic capabilities of human colorectal cancer cell lines with different liver metastatic potentials as well as the mechanism of action of PLAC1 in the metastatic process. Methods: The expression of PLAC1 was detected by reverse transcriptase PCR, western blot and real-time PCR. The effect of PLAC1 on metastatic potential was determined by proliferation, invasion, and angiogenesis assays, including an in vitro coculture system consisting of cancer cells and vascular endothelial cells that were used to detect the relationship between cancer cells and angiogenesis. In addition, we also determined PLAC1 downstream targets that preferentially contribute to the metastatic process. Results: PLAC1 was expressed in HT-29, WiDr and CaCo-2 colorectal cancer cells but not in Colo320 colorectal cancer cells. PLAC1 could not only significantly enhance the proliferation of CoLo320 and human umbilical vein endothelial cells (HUVECs) but could also promote the invasion of CoLo320 cells. The angiogenesis of HUVECs was enhanced by PLAC1 in a dose-dependent manner. In cocultured systems, angiogenesis was significantly increased by coculture with HT-29 cells. In addition, PLAC1 could promote angiogenesis in coculture with HT-29 cells. Furthermore, PLAC1-enhanced metastatic potential of colorectal cancer cells was dependent on activation of the PI3K/Akt/NF-κB pathway. Conclusions: The activation of PI3K/Akt/NF-κB signaling by PLAC1 may be critical for the metastasis of colorectal cancer cells. According to our results, we suggest that modification of PLAC1 function might be a promising new therapeutic approach to inhibit the aggressive spread of colorectal cancer.


2020 ◽  
Vol 21 (2) ◽  
pp. 642
Author(s):  
Magdalena Milczarek ◽  
Michał Chodyński ◽  
Anita Pietraszek ◽  
Martyna Stachowicz-Suhs ◽  
Kaori Yasuda ◽  
...  

Experimental data indicate that low-calcemic vitamin D derivatives (VDDs) exhibit anticancer properties, both in vitro and in vivo. In our search for a vitamin D analog as potential anticancer agent, we investigated the influence of chirality in the side chain of the derivatives of 1,25-dihydroxyergocalciferol (1,25D2) on their activities. In this study, we synthesized modified analogs at the side chain and the A-ring, which differed from one another in their absolute configuration at C-24, namely (24S)- and (24R)-1,25-dihydroxy-19-nor-20a-homo-ergocalciferols (PRI-5105 and PRI-5106, respectively), and evaluated their activity. Unexpectedly, despite introducing double-point modifications, both analogs served as very good substrates for the vitamin D-hydroxylating enzyme. Irrespective of their absolute C-24 configuration, PRI-5105 and PRI-5106 showed relatively low resistance to CYP24A1-dependent metabolic deactivation. Additionally, both VDDs revealed a similar antiproliferative activity against HT-29 colorectal cancer cells which was higher than that of 1,25D3, the major biologically active metabolite of vitamin D. Furthermore, PRI-5105 and PRI-5106 significantly enhanced the cell growth-inhibitory activity of 5-fluorouracil on HT-29 cell line. In conclusion, although the two derivatives showed a relatively high anticancer potential, they exhibited undesired high metabolic conversion.


Sign in / Sign up

Export Citation Format

Share Document