scholarly journals A T cell-intrinsic function for NF-κB RelB in experimental autoimmune encephalomyelitis

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guilhem Lalle ◽  
Raphaëlle Lautraite ◽  
Allison Voisin ◽  
Julie Twardowski ◽  
Pierre Stéphan ◽  
...  

AbstractNF-kappaB (NF-κB) is a family of transcription factors with pleiotropic functions in immune responses. The alternative NF-κB pathway that leads to the activation of RelB and NF-κB2, was previously associated with the activation and function of T cells, though the exact contribution of these NF-κB subunits remains unclear. Here, using mice carrying conditional ablation of RelB in T cells, we evaluated its role in the development of conventional CD4+ T (Tconv) cells and their function in autoimmune diseases. RelB was largely dispensable for Tconv cell homeostasis, activation and proliferation, and for their polarization toward different flavors of Thelper cells in vitro. Moreover, ablation of RelB had no impact on the capacity of Tconv cells to induce autoimmune colitis. Conversely, clinical severity of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS) was significantly reduced in mice with RelB-deficient T cells. This was associated with impaired expression of granulocyte–macrophage colony-stimulating factor (GM-CSF) specifically in the central nervous system. Our data reveal a discrete role for RelB in the pathogenic function of Tconv cells during EAE, and highlight this transcription factor as a putative therapeutic target in MS.

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Lin Luo ◽  
Xianzhen Hu ◽  
Michael L. Dixon ◽  
Brandon J. Pope ◽  
Jonathan D. Leavenworth ◽  
...  

Abstract Background Follicular regulatory T (TFR) cells are essential for the regulation of germinal center (GC) response and humoral self-tolerance. Dysregulated follicular helper T (TFH) cell-GC-antibody (Ab) response secondary to dysfunctional TFR cells is the root of an array of autoimmune disorders. The contribution of TFR cells to the pathogenesis of multiple sclerosis (MS) and murine experimental autoimmune encephalomyelitis (EAE) remains largely unclear. Methods To determine the impact of dysregulated regulatory T cells (Tregs), TFR cells, and Ab responses on EAE, we compared the MOG-induced EAE in mice with a FoxP3-specific ablation of the transcription factor Blimp1 to control mice. In vitro co-culture assays were used to understand how Tregs and Ab regulate the activity of microglia and central nervous system (CNS)-infiltrating myeloid cells. Results Mice with a FoxP3-specific deletion of Blimp1 developed severe EAE and failed to recover compared to control mice, reflecting conversion of Tregs into interleukin (IL)-17A/granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing effector T cells associated with increased TFH-Ab responses, more IgE deposition in the CNS, and inability to regulate CNS CD11b+ myeloid cells. Notably, serum IgE titers were positively correlated with EAE scores, and culture of CNS CD11b+ cells with sera from these EAE mice enhanced their activation, while transfer of Blimp1-deficient TFR cells promoted Ab production, activation of CNS CD11b+ cells, and EAE. Conclusions Blimp1 is essential for the maintenance of TFR cells and Ab responses in EAE. Dysregulated TFR cells and Ab responses promote CNS autoimmunity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hideaki Hasegawa ◽  
Izuru Mizoguchi ◽  
Naoko Orii ◽  
Shinya Inoue ◽  
Yasuhiro Katahira ◽  
...  

AbstractAmong various cytokines, interleukin (IL)-12 family cytokines have very unique characteristics in that they are composed of two distinct subunits and these subunits are shared with each other. IL-23, one of the IL-12 family cytokines, consists of p19 and p40 subunits, is mainly produced by antigen-presenting cells, and plays a critical role in the expansion and maintenance of pathogenic helper CD4+ T (Th)17 cells. Since we initially found that p19 is secreted in the culture supernatant of activated CD4+ T cells, we have further investigated the role of p19. p19 was revealed to associate with CD5 antigen-like (CD5L), which is a repressor of Th17 pathogenicity and is highly expressed in non-pathogenic Th17 cells, to form a composite p19/CD5L. This p19/CD5L was shown to activate STAT5 and enhance the differentiation into granulocyte macrophage colony-stimulating factor (GM-CSF)-producing CD4+ T cells. Both CD4+ T cell-specific conditional p19-deficient mice and complete CD5L-deficient mice showed significantly alleviated experimental autoimmune encephalomyelitis (EAE) with reduced frequency of GM-CSF+CD4+ T cells. During the course of EAE, the serum level of p19/CD5L, but not CD5L, correlated highly with the clinical symptoms. Thus, the composite p19/CD5L is a possible novel heterodimeric cytokine that contributes to EAE development with GM-CSF up-regulation.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Xuebin Qu ◽  
Jingjing Han ◽  
Ying Zhang ◽  
Xingqi Wang ◽  
Hongbin Fan ◽  
...  

Abstract Background Toll-like receptor 4 (TLR4) is well known for activating the innate immune system; however, it is also highly expressed in adaptive immune cells, such as CD4+ T-helper 17 (Th17) cells, which play a key role in multiple sclerosis (MS) pathology. However, the function and governing mechanism of TLR4 in Th17 remain unclear. Methods The changes of TLR4 in CD4+ T cells from MS patients and experimental autoimmune encephalomyelitis (EAE) mice were tested. TLR4-deficient (TLR4−/−) naïve T cells were induced in vitro and transferred into Rag1−/− mice to measure Th17 differentiation and EAE pathology. DNA sequence analyses combining with deletion fragments and mutation analyses, chromatin immunoprecipitation (ChIP), and electrophoretic mobility shift assay (EMSA) were used to explore the mechanism of TLR4 signaling pathway in regulating Th17 differentiation. Results The levels of TLR4 were increased in CD4+ Th17 cells both from MS patients and EAE mice, as well as during Th17 differentiation in vitro. TLR4−/− CD4+ naïve T cells inhibited their differentiation into Th17, and transfer of TLR4−/− CD4+ naïve T cells into Rag1−/− mice was defective in promoting EAE, characterized by less demyelination and Th17 infiltration in the spinal cord. TLR4 signal enhanced Th17 differentiation by activating RelA, downregulating the expression of miR-30a, a negative regulator of Th17 differentiation. Inhibition of RelA activity increased miR-30a level, but decreased Th17 differentiation rate. Furthermore, RelA directly regulated the expression of miR-30a via specific binding to a conserved element of miR-30a gene. Conclusions TLR4−/− CD4+ naïve T cells are inadequate in differentiating to Th17 cells both in vitro and in vivo. TLR4-RelA-miR-30a signal pathway regulates Th17 differentiation via direct binding of RelA to the regulatory element of miR-30a gene. Our results indicate modulating TLR4-RelA-miR-30a signal in Th17 may be a therapeutic target for Th17-mediated neurodegeneration in neuroinflammatory diseases.


2008 ◽  
Vol 205 (11) ◽  
pp. 2643-2655 ◽  
Author(s):  
Moran Meiron ◽  
Yaniv Zohar ◽  
Rachel Anunu ◽  
Gizi Wildbaum ◽  
Nathan Karin

Experimental autoimmune encephalomyelitis (EAE) is a T cell–mediated autoimmune disease of the central nervous system induced by antigen-specific effector Th17 and Th1 cells. We show that a key chemokine, CXCL12 (stromal cell–derived factor 1α), redirects the polarization of effector Th1 cells into CD4+CD25−Foxp3−interleukin (IL) 10high antigen-specific regulatory T cells in a CXCR4-dependent manner, and by doing so acts as a regulatory mediator restraining the autoimmune inflammatory process. In an attempt to explore the therapeutic implication of these findings, we have generated a CXCL12-immunoglobulin (Ig) fusion protein that, when administered during ongoing EAE, rapidly suppresses the disease in wild-type but not IL-10–deficient mice. Anti–IL-10 neutralizing antibodies could reverse this suppression. The beneficial effect included selection of antigen-specific T cells that were CD4+CD25−Foxp3−IL-10high, which could adoptively transfer disease resistance, and suppression of Th17 selection. However, in vitro functional analysis of these cells suggested that, even though CXCL12-Ig–induced tolerance is IL-10 dependent, IL-10–independent mechanisms may also contribute to their regulatory function. Collectively, our results not only demonstrate, for the first time, that a chemokine functions as a regulatory mediator, but also suggest a novel way for treating multiple sclerosis and possibly other inflammatory autoimmune diseases.


2003 ◽  
Vol 10 (4) ◽  
pp. 564-572 ◽  
Author(s):  
Diane L. Sewell ◽  
Emily K. Reinke ◽  
Dominic O. Co ◽  
Laura H. Hogan ◽  
Robert B. Fritz ◽  
...  

ABSTRACT Infectious agents have been proposed to influence susceptibility to autoimmune diseases such as multiple sclerosis. We induced a Th1-mediated central nervous system (CNS) autoimmune disease, experimental autoimmune encephalomyelitis (EAE) in mice with an ongoing infection with Mycobacterium bovis strain bacillus Calmette-Guérin (BCG) to study this possibility. C57BL/6 mice infected with live BCG for 6 weeks were immunized with myelin oligodendroglial glycoprotein peptide (MOG35-55) to induce EAE. The clinical severity of EAE was reduced in BCG-infected mice in a BCG dose-dependent manner. Inflammatory-cell infiltration and demyelination of the spinal cord were significantly lessened in BCG-infected animals compared with uninfected EAE controls. ELISPOT and gamma interferon intracellular cytokine analysis of the frequency of antigen-specific CD4+ T cells in the CNS and in BCG-induced granulomas and adoptive transfer of MOG35-55-specific green fluorescent protein-expressing cells into BCG-infected animals indicated that nervous tissue-specific (MOG35-55) CD4+ T cells accumulate in the BCG-induced granuloma sites. These data suggest a novel mechanism for infection-mediated modulation of autoimmunity. We demonstrate that redirected trafficking of activated CNS antigen-specific CD4+ T cells to local inflammatory sites induced by BCG infection modulates the initiation and progression of a Th1-mediated CNS autoimmune disease.


Sign in / Sign up

Export Citation Format

Share Document