cns autoimmunity
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 51)

H-INDEX

30
(FIVE YEARS 6)

2021 ◽  
Vol 12 ◽  
Author(s):  
Michael Kolesnik ◽  
Ahmad A. Ballout ◽  
Natasha Hameed ◽  
Souhel Najjar

Background: Chorea as a symptom of late-onset post-infectious autoimmune encephalitis has been reported with HSV-1 but not HSV-2 encephalitis. Extrapyramidal symptoms are typically associated with the presence of anti-NMDA receptor antibodies but may also exist in antibody-negative individuals.Case: This case highlights a patient who presented with mental status changes and chorea as the initial manifestation of HSV-2 encephalitis. The choreiform movements failed to respond to antiviral medications but were rapidly responsive to plasmapheresis, which, together with abnormal intrathecal immunoglobulin synthesis, suggests a potential contribution of parainfectious immune-mediated process. The patient made a full recovery and a complete resolution of the chorea.Discussion: This is the first case associating HSV-2 encephalitis presentation with chorea. The neurological complications, including chorea, are largely related to active CNS HSV-2 infection, possibly together with triggered CNS autoimmunity despite undetectable CSF neuronal autoantibodies and normal neuroimaging. Early diagnosis and treatment with antiviral agent and immune therapies might be pivotal to optimize the clinical outcome.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Carolina Prado ◽  
Francisco Osorio-Barrios ◽  
Paulina Falcón ◽  
Alexandra Espinoza ◽  
Juan José Saez ◽  
...  

Abstract Background Recent evidence has shown dopamine as a major regulator of inflammation. Accordingly, dopaminergic regulation of immune cells plays an important role in the physiopathology of inflammatory disorders. Multiple sclerosis (MS) is an inflammatory disease involving a CD4+ T-cell-driven autoimmune response to central nervous system (CNS) derived antigens. Evidence from animal models has suggested that B cells play a fundamental role as antigen-presenting cells (APC) re-stimulating CD4+ T cells in the CNS as well as regulating T-cell response by mean of inflammatory or anti-inflammatory cytokines. Here, we addressed the role of the dopamine receptor D3 (DRD3), which displays the highest affinity for dopamine, in B cells in animal models of MS. Methods Mice harbouring Drd3-deficient or Drd3-sufficient B cells were generated by bone marrow transplantation into recipient mice devoid of B cells. In these mice, we compared the development of experimental autoimmune encephalomyelitis (EAE) induced by immunization with a myelin oligodendrocyte glycoprotein (MOG)-derived peptide (pMOG), a model that leads to CNS-autoimmunity irrespective of the APC-function of B cells, or by immunization with full-length human MOG protein (huMOG), a model in which antigen-specific activated B cells display a fundamental APC-function in the CNS. APC-function was assessed in vitro by pulsing B cells with huMOG-coated beads and then co-culturing with MOG-specific T cells. Results Our data show that the selective Drd3 deficiency in B cells abolishes the disease development in the huMOG-induced EAE model. Mechanistic analysis indicates that although DRD3-signalling did not affect the APC-function of B cells, DRD3 favours the CNS-tropism in a subset of pro-inflammatory B cells in the huMOG-induced EAE model, an effect that was associated with higher CXCR3 expression. Conversely, the results show that the selective Drd3 deficiency in B cells exacerbates the disease severity in the pMOG-induced EAE model. Further analysis shows that DRD3-stimulation increased the expression of the CNS-homing molecule CD49d in a B-cell subset with anti-inflammatory features, thus attenuating EAE manifestation in the pMOG-induced EAE model. Conclusions Our findings demonstrate that DRD3 in B cells exerts a dual role in CNS-autoimmunity, favouring CNS-tropism of pro-inflammatory B cells with APC-function and promoting CNS-homing of B cells with anti-inflammatory features. Thus, these results show DRD3-signalling in B cells as a critical regulator of CNS-autoimmunity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mahalia M. McGill ◽  
Alyssa R. Richman ◽  
Joseph R. Boyd ◽  
Bristy Sabikunnahar ◽  
Karolyn G. Lahue ◽  
...  

Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system, representing the leading cause of non-traumatic neurologic disease in young adults. This disease is three times more common in women, yet more severe in men, but the mechanisms underlying these sex differences remain largely unknown. MS is initiated by autoreactive T helper cells, but CNS-resident and CNS-infiltrating myeloid cells are the key proximal effector cells regulating disease pathology. We have previously shown that genetic ablation of p38α MAP kinase broadly in the myeloid lineage is protective in the autoimmune model of MS, experimental autoimmune encephalomyelitis (EAE), but only in females, and not males. To precisely define the mechanisms responsible, we used multiple genetic approaches and bone marrow chimeras to ablate p38α in microglial cells, peripheral myeloid cells, or both. Deletion of p38α in both cell types recapitulated the previous sex difference, with reduced EAE severity in females. Unexpectedly, deletion of p38α in the periphery was protective in both sexes. In contrast, deletion of p38α in microglia exacerbated EAE in males only, revealing opposing roles of p38α in microglia vs. periphery. Bulk transcriptional profiling revealed that p38α regulated the expression of distinct gene modules in male vs. female microglia. Single-cell transcriptional analysis of WT and p38α-deficient microglia isolated from the inflamed CNS revealed a diversity of complex microglial states, connected by distinct convergent transcriptional trajectories. In males, microglial p38α deficiency resulted in enhanced transition from homeostatic to disease-associated microglial states, with the downregulation of regulatory genes such as Atf3, Rgs1, Socs3, and Btg2, and increased expression of inflammatory genes such as Cd74, Trem2, and MHC class I and II genes. In females, the effect of p38α deficiency was divergent, exhibiting a unique transcriptional profile that included an upregulation of tissue protective genes, and a small subset of inflammatory genes that were also upregulated in males. Taken together, these results reveal a p38α-dependent sex-specific molecular pathway in microglia that is protective in CNS autoimmunity in males, suggesting that autoimmunity in males and females is driven by distinct cellular and molecular pathways, thus suggesting design of future sex-specific therapeutic approaches.


Brain ◽  
2021 ◽  
Author(s):  
Meike Mitsdoerffer ◽  
Giovanni Di Liberto ◽  
Sarah Dötsch ◽  
Christopher Sie ◽  
Ingrid Wagner ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Elia Sechi ◽  
Eoin P. Flanagan

Antibody-mediated disorders of the central nervous system (CNS) are increasingly recognized as neurologic disorders that can be severe and even life-threatening but with the potential for reversibility with appropriate treatment. The expanding spectrum of newly identified autoantibodies targeting glial or neuronal (neural) antigens and associated clinical syndromes (ranging from autoimmune encephalitis to CNS demyelination) has increased diagnostic precision, and allowed critical reinterpretation of non-specific neurological syndromes historically associated with systemic disorders (e.g., Hashimoto encephalopathy). The intracellular vs. cell-surface or synaptic location of the different neural autoantibody targets often helps to predict the clinical characteristics, potential cancer association, and treatment response of the associated syndromes. In particular, autoantibodies targeting intracellular antigens (traditionally termed onconeural autoantibodies) are often associated with cancers, rarely respond well to immunosuppression and have a poor outcome, although exceptions exist. Detection of neural autoantibodies with accurate laboratory assays in patients with compatible clinical-MRI phenotypes allows a definite diagnosis of antibody-mediated CNS disorders, with important therapeutic and prognostic implications. Antibody-mediated CNS disorders are rare, and reliable autoantibody identification is highly dependent on the technique used for detection and pre-test probability. As a consequence, indiscriminate neural autoantibody testing among patients with more common neurologic disorders (e.g., epilepsy, dementia) will necessarily increase the risk of false positivity, so that recognition of high-risk clinical-MRI phenotypes is crucial. A number of emerging clinical settings have recently been recognized to favor development of CNS autoimmunity. These include antibody-mediated CNS disorders following herpes simplex virus encephalitis or occurring in a post-transplant setting, and neurological autoimmunity triggered by TNFα inhibitors or immune checkpoint inhibitors for cancer treatment. Awareness of the range of clinical and radiological manifestations associated with different neural autoantibodies, and the specific settings where autoimmune CNS disorders may occur is crucial to allow rapid diagnosis and early initiation of treatment.


2021 ◽  
pp. 577675
Author(s):  
Emma E. Kraus ◽  
Laura Kakuk-Atkins ◽  
Marissa F. Farinas ◽  
Matthew Jeffers ◽  
Amy E. Lovett-Racke ◽  
...  
Keyword(s):  
T Cells ◽  

Author(s):  
Yilei Jing ◽  
Rui Ma ◽  
Yaojuan Chu ◽  
Mengmeng Dou ◽  
Mengru Wang ◽  
...  

Author(s):  
Deepa Badrinath Murthy ◽  
Ana Gutierrez Alvarez ◽  
Wendy Vargas ◽  
Melissa Kaori Silva Litao ◽  
Bina Shah

Abstract Objectives Hashimoto’s thyroiditis (HT) is characterized by lymphocytic thyroid infiltration. Gradual thyroid failure can occur due to thyroid cell apoptosis. Rarely neurological autoimmunity due to glutamic acid decarboxylase (GAD) antigen can co exist with HT. Case presentation A seven-year-old male presented with tiredness, weight loss, frequent falls, tachycardia, firm thyromegaly, and abnormal gait. Biochemical markers and thyroid ultrasound (TUS) showed autoimmune hyperthyroidism. Methimazole (MMI) was started and continued for 2.2 years. MRI brain was normal and neurological symptoms resolved. At nine years, he became hypothyroid and levothyroxine (LT4) was started. Serial TUS showed progressive thyroid atrophy. At 14.8 years, he developed epilepsy and fourth cranial nerve palsy, and diagnosed with GAD-65 central nervous system disease. At 15.3 years, TUS showed complete atrophy of right lobe with involuting left lobe volume. Conclusions This is an unusual form of atrophic thyroiditis (AT) with coexisting neurological autoimmunity. GAD-65 CNS autoimmunity should be considered in children with AT presenting with neurological signs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Javad Rasouli ◽  
Giacomo Casella ◽  
Larissa L. W. Ishikawa ◽  
Rodolfo Thome ◽  
Alexandra Boehm ◽  
...  

IFN-β has been the treatment for multiple sclerosis (MS) for almost three decades, but understanding the mechanisms underlying its beneficial effects remains incomplete. We have shown that MS patients have increased numbers of GM-CSF+ Th cells in circulation, and that IFN-β therapy reduces their numbers. GM-CSF expression by myelin-specific Th cells is essential for the development of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. These findings suggested that IFN-β therapy may function via suppression of GM-CSF production by Th cells. In the current study, we elucidated a feedback loop between monocytes and Th cells that amplifies autoimmune neuroinflammation, and found that IFN-β therapy ameliorates central nervous system (CNS) autoimmunity by inhibiting this proinflammatory loop. IFN-β suppressed GM-CSF production in Th cells indirectly by acting on monocytes, and IFN-β signaling in monocytes was required for EAE suppression. IFN-β increased IL-10 expression by monocytes, and IL-10 was required for the suppressive effects of IFN-β. IFN-β treatment suppressed IL-1β expression by monocytes in the CNS of mice with EAE. GM-CSF from Th cells induced IL-1β production by monocytes, and, in a positive feedback loop, IL-1β augmented GM-CSF production by Th cells. In addition to GM-CSF, TNF and FASL expression by Th cells was also necessary for IL-1β production by monocyte. IFN-β inhibited GM-CSF, TNF, and FASL expression by Th cells to suppress IL-1β secretion by monocytes. Overall, our study describes a positive feedback loop involving several Th cell- and monocyte-derived molecules, and IFN-β actions on monocytes disrupting this proinflammatory loop.


2021 ◽  
Author(s):  
Carolina Prado ◽  
Francisco Osorio-Barrios ◽  
Alexandra Espinoza ◽  
Juan J Saez ◽  
María I Yuseff ◽  
...  

Abstract Background. Recent evidence has shown dopamine as a major regulator of inflammation. Accordingly, dopaminergic regulation of adaptive and innate immune cells plays an important role in the physiopathology of inflammatory disorders. Multiple sclerosis (MS) is an inflammatory disease involving a CD4+ T-cell-driven autoimmune response to central nervous system (CNS) derived antigens. Evidence from animal models has suggested that B-cells play a fundamental role as antigen-presenting cells (APC) re-stimulating CD4+ T-cells in the CNS as well as regulating T-cell response by mean of inflammatory or anti-inflammatory cytokines. Here we addressed the role of the dopamine receptor D3 (DRD3), which display the highest affinity for dopamine, in B-cells in animal models of MS. Methods. Mice harbouring Drd3-deficient or Drd3-suficient B-cells were generated by bone marrow transplantation into recipient mice devoid of B-cells. In these mice we compare the development of experimental autoimmune encephalomyelitis (EAE) induced by immunization with a myelin oligodendrocyte glycoprotein (MOG)-derived peptide (pMOG), a model that leads to CNS-autoimmunity irrespective of the APC function of B-cells, or by immunization with full-length human MOG protein (huMOG), a model in which antigen-specific activated B-cells display a fundamental APCs function in the CNS.Results. Our data shows that, by promoting the expression of the chemokine receptor CXCR3 in autoreactive B-cells, DRD3-stimulation favours the CNS-tropism in a subset of B-cells that act as APC in the CNS, which is fundamental for disease development. Furthermore, we found that DRD3- stimulation induced the expression of the CNS-homing molecule CD49d in a B-cell subset with anti-inflammatory features, thus attenuating EAE manifestation in a CNS-autoimmunity model independent of the APC function of B-cells.Conclusions. Our findings demonstrate that DRD3-stimulation in B-cells exerts a dual role in CNS-autoimmunity, favouring CNS-tropism of pro-inflammatory B-cells with APC function, and also promoting CNS-homing of B-cells with anti-inflammatory features. Thus, these results show DRD3-signalling in B-cells as a key regulator of CNS-autoimmunity.


Sign in / Sign up

Export Citation Format

Share Document