scholarly journals Synthesis of nanosized nickel zinc ferrite using electric arc furnace dust and ferrous pickle liquor

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ayman Galal ◽  
Olfat Sadek ◽  
Moataz Soliman ◽  
Shaker Ebrahim ◽  
M. Anas

AbstractElectric arc furnace dust (EAFD) and waste pickle liquor (WPL); two major side products of the steel industry with negative environmental impact were used for the synthesis of nickel zinc ferrite (NZF); the important magnetic ceramic material of versatile industrial applications. The structural and magnetic properties of the prepared material were examined which showed good magnetic properties (high saturation magnetization and low coercivity) compared with those synthesized from pure reagents. In the applied process, nano sized nickel zinc ferrite (NZF) with a composition of Nix(Zn + impurities)1−xFe2O4 (where x = 0, 0.25, 0.5, 0.75 and impurities of manganese, magnesium, and calcium were prepared using zinc-containing electric arc furnace dust (EAFD) and waste pickle liquor (WPL). The chemical compositions of the prepared samples were determined using X-ray fluorescence (XRF) analysis. The optimum acetic acid concentration for EAFD treatment was found 2% v/v that decreased Ca content of EAFD by 70.6% without loss of Fe and Zn. The structural and morphological characterization was done by X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Field Emission Scanning Electron Microscope (FESEM) to confirm the formation of Ni–Zn ferrite nanoparticles and estimate the particle sizes. The maximum saturation magnetization (Ms) of 73.89 emu/g was achieved at 0.5 Ni content and the minimum coercivity of 2.55 Oe was obtained at 0.25 Ni content.

2017 ◽  
Vol 58 (6) ◽  
pp. 586-590 ◽  
Author(s):  
S. A. Yakornov ◽  
A. M. Pan’shin ◽  
P. I. Grudinsky ◽  
V. G. Dyubanov ◽  
L. I. Leont’ev ◽  
...  

2015 ◽  
Vol 656-657 ◽  
pp. 428-433
Author(s):  
Sureerat Polsilapa ◽  
Piyakarnt Khamsriraphap ◽  
Panyawat Wangyao

Electric arc furnace dust is a byproduct from steelmaking, contained up to 50%wt of zinc ferrite. It also contains about 10-20%wt of zinc oxide and the other metal oxides. Approximately 100,000 tons of EAF dust are generated per annum within Thailand. All of the dust has been sent to landfill. The objective of this research is to investigate the kinetics mechanism of the decomposition of zinc ferrite in EAF dust to obtain zinc oxide and iron oxide by using iron powder as a reducing agent. The process was carried out by mixing zinc ferrite or EAF dust with iron powder then compressed them in a mold. The samples from compression were treated by pyrometallurgical process. The factors required to be concerned were temperatures, particle sizes of iron powder, and mole ratios of zinc ferrite per iron powder, respectively. The treated samples were analyzed by X-ray diffraction (XRD) in order to characterize zinc ferrite phase transformation. It was found that the quantity of zinc ferrite, both either pure zinc ferrite and zinc ferrite in EAF dust, were decreased after treating by the pyrometallurgical process when increasing treating time from 30 to 180 minutes at 600°C, the particle size of iron powder at 10 micron, and the mole ratio of zinc ferrite per iron powder at 1:3. Moreover about 70%wt of zinc ferrite was decomposed and the products obtained were zinc oxides (ZnO) and iron oxides (Fe3O4, FeO, Fe2O3). The reduction of zinc ferrite with iron powder was well-defined taking place by diffusion thru product layer control. The activation energy of the reduction process was found to be 47.21±2.83 kJ/mol. Therefore, the decomposition of zinc ferrite by iron powder could be carried out at 1 atm with low pyrometallurgical temperature (600°C) and equipped with hydrometallurgical process to obtain high zinc yield.


2018 ◽  
Vol 765 ◽  
pp. 73-78 ◽  
Author(s):  
Ahmad Mostafa ◽  
Mohamed Shahtout ◽  
Tariq Al Afeefi ◽  
Mamoun Medraj

Steelmaking is accompanied with releasing a large quantity of solid particle in the form of dust. Electric arc furnace dust (EAFD) is known to have high pH number and traces of heavy metals. The objective of this work was to find a suitable procedure for converting the dust waste into inert and useful byproducts using thermodynamic calculations and experimental investigation. The physical, chemical and mineralogical characteristics of initial EAFD were analyzed using different techniques, such as: X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), grain size analysis and metallography. The pH measurement procedure was carried out in accordance with the standard test method for pH of soils “ASTM 4972-95a”. The results of XRD, SEM and EDS analysis were consistent and showed that Fe2O3, CaO, Al2O3, SiO2, MgO, ZnO and traces of other oxides are in the main composition of the EAFD batches with different relative amounts. Furthermore, the particle size measurements revealed that the EAFD particles are in the 0.1 to 394 μm size range. The pH number was ranging between 11.15 and 12.21 for all measurements. The experimental results were used as input data for thermodynamic calculations and accordingly SiO2 and Al2O3 were among the candidates for making ceramic materials through forming glass regions that surround and encapsulate the iron oxide particles. SiO2 modified samples exhibited better apparent structural properties than other compositions. Whereas Al2O3-modified samples showed variation in the product color. Thus, it is concluded from this work that a mixture of EAFD can be modified by 5-20 wt.% of SiO2 and then fired at 1100°C to make inert ceramic materials with reasonable mechanical properties.


2015 ◽  
Vol 799-800 ◽  
pp. 72-76
Author(s):  
Sureerat Polsilapa ◽  
Nakarin Sriyowong

This project researched a mechanism of the decomposition of zinc ferrite (ZnFe2O4) to be zinc oxide (ZnO) and calcium ferrite (Ca2Fe2O5) by using calcium oxide (CaO) from lime as a reducing agent. Zinc ferrite was mostly found in electric arc furnace dust (EAFD), which is a by product from a steel making industry. The experiment was simple as following. The EAFD was mixed with lime in mole ratio of zinc ferrite and calcium oxide at 1:2, 1:3 and 1:4 and then compressed into pellets. Effects of mole ratio, temperatures and times on the decomposition were studied. The conditions used in these experiments were 800, 900, 1,000 and 1,100 oC for 2, 4 and 6 hours. The results showed that the suitable conditions for the decomposition of zinc ferrite by calcium oxide could be as low as 800 oC for only 2 hours with mole ratio of zinc ferrite from EAFD and calcium oxide from lime as 1:2. A solubility test was provided to processed samples at the conditions as 0.1 M hydrochloric acid (HCl) at 50 oC for 20 minutes. It was found that EAFD from pyrometallurgical treatment could be decomposed to be zinc oxide and the following by hydrometallurgical treatment could recovery high zinc yield from the remaining residue. However, EAFD treated by only hydrometallurgical process obtained lower zinc recovery due to the high stability of zinc ferrite in HCl and most of the solutions.


2014 ◽  
Vol 804 ◽  
pp. 127-130 ◽  
Author(s):  
Anh Hoa Bui ◽  
Thanh Lam Vu ◽  
Van Thanh Nguyen

Electric arc furnace steelmakers are finding that dealing with the dust is increasingly difficult. Stockpiling this dust on site, recycling or sending offsite for disposal all entail considerable difficulties and costs. Succesful recycle of the valuable metals (iron, zinc) present in electric arc furnace dust will result in resource conservation while simultanuously reducing the disposal problem. In this research, carbothermic reduction of electric arc furnace dust using coke has been performed to observe the reduction ability and volatilization rate of zinc. Several properties of the dust were determined using chemical analysis, differential scanning calorimetry (DSC), X-ray diffraction (XRD), etc. It was found that the dust contained 24 %mass of iron, 14 %mass of zinc which stayed in oxide form. Experimental results shown that rates of the volatilization zinc in the dust were high, e.g. 96.45% at 1100°C. The activation energy of the reduction was calculated to be 210.63 kJ/mol in temperature range of 900 to 1100°C. Futher study on effective collection of iron and volatile zinc oxide must be carried out to obtain a suitble procedure of recycle of the electric arc furnace dust.


Sign in / Sign up

Export Citation Format

Share Document