scholarly journals Early-onset of Atlantic Meridional Overturning Circulation weakening in response to atmospheric CO2 concentration

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mihai Dima ◽  
Denis R. Nichita ◽  
Gerrit Lohmann ◽  
Monica Ionita ◽  
Mirela Voiculescu

AbstractThe Atlantic Meridional Overturning Circulation (AMOC), a tipping component of the climate system, is projected to slowdown during the 21st century in response to increased atmospheric CO2 concentration. The rate and start of the weakening are associated with relatively large uncertainties. Observed sea surface temperature-based reconstructions indicate that AMOC has been weakening since the mid-20th century, but its forcing factors are not fully understood. Here we provide dynamical observational evidence that the increasing atmospheric CO2 concentration affects the North Atlantic heat fluxes and precipitation rate, and weakens AMOC, consistent with numerical simulations. The inferred weakening, starting in the late 19th century, earlier than previously suggested, is estimated at 3.7 ± 1.0 Sv over the 1854–2016 period, which is larger than it is shown in numerical simulations (1.4 ± 1.4 Sv).

2021 ◽  
Author(s):  
Julia Weiffenbach ◽  
Michiel Baatsen ◽  
Anna von der Heydt

<p>The mid-Pliocene climate is the most recent geological period with a greenhouse gas concentration of approximately 400 ppmv, similar to the present day. Proxy reconstructions indicate enhanced warming in the high North Atlantic in the mid-Pliocene, which has been suggested to be a response to a stronger Atlantic Meridional Overturning Circulation (AMOC). PlioMIP2 ensemble results show a stronger AMOC and simulated North Atlantic sea surface temperatures (SSTs) match reconstructions better than PlioMIP1. A major difference between PlioMIP1 and PlioMIP2 is the closure of the Bering Strait and Canadian Archipelago in the Pliocene. Previous studies have shown that closure of these Arctic gateways leads to an enhanced AMOC due to altered freshwater fluxes in the Arctic.</p><p>Analysis of our Community Earth System Model (CESM1) simulations shows that the simulated increase in North Atlantic SSTs and strengthened AMOC in the Pliocene is a result of Pliocene boundary conditions rather than CO<sub>2</sub> concentration increase. Here we compare results from two runs with pre-industrial boundary conditions and 280 and 560 ppmv CO<sub>2</sub> concentrations and three runs with PlioMIP2 boundary conditions and 280, 400 and 560 ppmv CO<sub>2</sub> concentrations. Results show a 10-15% stronger AMOC in the Pliocene simulations as well as enhanced warming and saltening of the North Atlantic sea surface. While there is a stronger AMOC, the Atlantic northward ocean heat transport (OHT) in the Pliocene simulations only increases 0-3% with respect to the pre-industrial. Analysis indicates there is an altered relationship between the AMOC and OHT in the Pliocene, pointing to fundamentally different behavior of the AMOC in the Pliocene simulations. This is supported by a specific spatial pattern of deep water formation (DWF) areas in the Pliocene simulations that is significantly different from that of the pre-industrial. In the Pliocene simulations, DWF areas adjacent to south Greenland disappear and new DWF areas appear further southwards in the Labrador Sea off the coast of Newfounland. These results indicate that insight into the effect of the palaeogeographic boundary conditions is crucial to understanding the Pliocene climate and its potential as a geological equivalent to a future greenhouse climate.</p>


Ocean Science ◽  
2014 ◽  
Vol 10 (6) ◽  
pp. 881-891 ◽  
Author(s):  
S.-E. Brunnabend ◽  
H. A. Dijkstra ◽  
M. A. Kliphuis ◽  
B. van Werkhoven ◽  
H. E. Bal ◽  
...  

Abstract. As an extreme scenario of dynamical sea level changes, regional sea surface height (SSH) changes that occur in the North Atlantic due to an abrupt weakening of the Atlantic meridional overturning circulation (AMOC) are simulated. Two versions of the same ocean-only model are used to study the effect of ocean model resolution on these SSH changes: a high-resolution (HR) strongly eddying version and a low-resolution (LR) version in which the effect of eddies is parameterised. The weakening of the AMOC is induced in both model versions by applying strong freshwater perturbations around Greenland. A rapid decrease of the AMOC in the HR version induces much shorter return times of several specific regional and coastal extremes in North Atlantic SSH than in the LR version. This effect is caused by a change in main eddy pathways associated with a change in separation latitude of the Gulf Stream.


2018 ◽  
Vol 31 (13) ◽  
pp. 5165-5188 ◽  
Author(s):  
He Wang ◽  
Sonya Legg ◽  
Robert Hallberg

This study examines the relative roles of the Arctic freshwater exported via different pathways on deep convection in the North Atlantic and the Atlantic meridional overturning circulation (AMOC). Deep water feeding the lower branch of the AMOC is formed in several North Atlantic marginal seas, including the Labrador Sea, Irminger Sea, and the Nordic seas, where deep convection can potentially be inhibited by surface freshwater exported from the Arctic. The sensitivity of the AMOC and North Atlantic to two major freshwater pathways on either side of Greenland is studied using numerical experiments. Freshwater export is rerouted in global coupled climate models by blocking and expanding the channels along the two routes. The sensitivity experiments are performed in two sets of models (CM2G and CM2M) with different control simulation climatology for comparison. Freshwater via the route east of Greenland is found to have a larger direct impact on Labrador Sea convection. In response to the changes of freshwater route, North Atlantic convection outside of the Labrador Sea changes in the opposite sense to the Labrador Sea. The response of the AMOC is found to be sensitive to both the model formulation and mean-state climate.


2007 ◽  
Vol 37 (9) ◽  
pp. 2207-2227 ◽  
Author(s):  
Robert S. Pickart ◽  
Michael A. Spall

Abstract The overturning and horizontal circulations of the Labrador Sea are deduced from a composite vertical section across the basin. The data come from the late-spring/early-summer occupations of the World Ocean Circulation Experiment (WOCE) AR7W line, during the years 1990–97. This time period was chosen because it corresponded to intense wintertime convection—the deepest and densest in the historical record—suggesting that the North Atlantic meridional overturning circulation (MOC) would be maximally impacted. The composite geostrophic velocity section was referenced using a mean lateral velocity profile from float data and then subsequently adjusted to balance mass. The analysis was done in depth space to determine the net sinking that results from convection and in density space to determine the diapycnal mass flux (i.e., the transformation of light water to Labrador Sea Water). The mean overturning cell is calculated to be 1 Sv (1 Sv ≡ 106 m3 s−1), as compared with a horizontal gyre of 18 Sv. The total water mass transformation is 2 Sv. These values are consistent with recent modeling results. The diagnosed heat flux of 37.6 TW is found to result predominantly from the horizontal circulation, both in depth space and density space. These results suggest that the North Atlantic MOC is not largely impacted by deep convection in the Labrador Sea.


2013 ◽  
Vol 26 (7) ◽  
pp. 2160-2183 ◽  
Author(s):  
Florian Sévellec ◽  
Alexey V. Fedorov

Abstract Variations in the strength of the Atlantic meridional overturning circulation (AMOC) are a major potential source of decadal and longer climate variability in the Atlantic. This study analyzes continuous integrations of tangent linear and adjoint versions of an ocean general circulation model [Océan Parallélisé (OPA)] and rigorously shows the existence of a weakly damped oscillatory eigenmode of the AMOC centered in the North Atlantic Ocean and controlled solely by linearized ocean dynamics. In this particular GCM, the mode period is roughly 24 years, its e-folding decay time scale is 40 years, and it is the least-damped oscillatory mode in the system. Its mechanism is related to the westward propagation of large-scale temperature anomalies in the northern Atlantic in the latitudinal band between 30° and 60°N. The westward propagation results from a competition among mean eastward zonal advection, equivalent anomalous westward advection caused by the mean meridional temperature gradient, and westward propagation typical of long baroclinic Rossby waves. The zonal structure of temperature anomalies alternates between a dipole (corresponding to an anomalous AMOC) and anomalies of one sign (yielding no changes in the AMOC). Further, it is shown that the system is nonnormal, which implies that the structure of the least-damped eigenmode of the tangent linear model is different from that of the adjoint model. The “adjoint” mode describes the sensitivity of the system (i.e., it gives the most efficient patterns for exciting the leading eigenmode). An idealized model is formulated to highlight the role of the background meridional temperature gradient in the North Atlantic for the mode mechanism and the system nonnormality.


2016 ◽  
Author(s):  
Pierre Burckel ◽  
Claire Waelbroeck ◽  
Yiming Luo ◽  
Didier Roche ◽  
Sylvain Pichat ◽  
...  

Abstract. We reconstruct the geometry and strength of the Atlantic Meridional Overturning Circulation during Heinrich Stadial 2 and three Greenland interstadials of the 20–50 ka period based on the comparison of new and published sedimentary 231Pa/230Th data with simulated sedimentary 231Pa/230Th. We show that the deep Atlantic circulation during these interstadials was very different from that of the Holocene. Northern-sourced waters likely circulated above 2500 m depth, with a flow rate lower than that of the present day North Atlantic Deep Water (NADW). Southern-sourced deep waters most probably flowed northwards below 4000 m depth into the North Atlantic basin, and then southwards as a return flow between 2500 and 4000 m depth. The flow rate of this southern-sourced deep water was likely larger than that of the modern Antarctic Bottom Water (AABW). At the onset of Heinrich Stadial 2, the structure of the AMOC significantly changed. The deep Atlantic was probably directly affected by a southern sourced water mass below 2500 m depth, while a slow southward flowing water mass originating from the North Atlantic likely influenced depths between 1500 and 2500 m down to the equator.


2021 ◽  
Author(s):  
Mengdie Xie ◽  
John C. Moore ◽  
Liyun Zhao ◽  
Michael Wolovick ◽  
Helene Muri

Abstract. Climate models simulate lower rates of North Atlantic heat transport under greenhouse gas climates than at present due to a reduction in the strength of the North Atlantic meridional overturning circulation (AMOC). Solar geoengineering whereby surface temperatures are cooled by reduction of incoming shortwave radiation may be expected to ameliorate this effect. We investigate this using six Earth System Models running scenarios from GeoMIP (Geoengineering model intercomparison project) in the cases of: i) reduction in the solar constant, mimicking dimming of the sun; ii) sulfate aerosol injection into the lower equatorial stratosphere; and iii) brightening of the ocean regions mimicking enhancing tropospheric cloud amounts. We find that despite across model differences, AMOC decreases are attributable to reduced air-ocean temperature differences, and reduced September Arctic sea ice extent, with no significant impact from changing surface winds or precipitation-evaporation. Reversing the surface freshening of the North Atlantic overturning regions caused by decreased summer sea ice sea helps to promote AMOC. Comparing the geoengineering types after normalizing them for the differences in top of atmosphere radiative forcing, we find that solar dimming is more effective than either marine cloud brightening or stratospheric aerosol injection.


Sign in / Sign up

Export Citation Format

Share Document