scholarly journals Leveraging the orthogonality of Zernike modes for robust free-space optical communication

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Santanu Konwar ◽  
Bosanta R. Boruah

Abstract Free-space optical communication systems exploit the properties of light beams to transfer information through a free-space link. Indeed such systems provide an exciting alternative for communication. Here we introduce information transfer through free-space using a laser beam having its phase encoded with multiple orthogonal aberration modes. We use Zernike polynomials, which form a complete basis set, to represent the aberration modes. The user information is converted to co-efficients of the Zernike modes which are summed digitally to obtain the resultant phase profile. A single phase modulating device then reads the resultant phase to shape the wavefront of the beam to be transmitted. The receiving station estimates the co-efficients of all modes in the beam from a single measurement of a wavefront sensor, to retrieve the user information. We demonstrate data transfer using multiple modes, each with multiple strengths, and external perturbation compensation using the completeness property of the modes.

2002 ◽  
Author(s):  
Neil J. Vallestero ◽  
Mark Khusid ◽  
Narasimha S. Prasad ◽  
John C. Carrano ◽  
George Duchak ◽  
...  

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohammad Yawar Wani ◽  
Hitesh Pathak ◽  
Karamjit Kaur ◽  
Anil Kumar

AbstractFree space optical communication systems (FSO’s) have surfaced as admired means of communication in the past few years. High speed of operation, low bandwidth requirements and system reliability are the major factors responsible for their wide range of applications. These communication systems use air as a medium of transmission. Since there is no component like fiber or cable, but air is only medium, the variations in atmospheric conditions play a vital role in performance of these networks. The reason behind is that the conditions like presence of humidity, haze, snowfall, rain, dust or smoke changes the attenuation coefficient of medium. The raised attenuation levels results in increased losses and need to be carefully monitored. The present work analyzes the influence of rain on the performance of FSO network in terms of quality of transmission. The paper discusses the impact of rainfall on attenuation coefficient of air. Then impact of this attenuation on network transmission is presented in terms of BER and Q-factor. In order to demonstrate the impact, BER and Q-value is calculated for 10 Gbps FSO link for clear weather and rainfall conditions.


Sign in / Sign up

Export Citation Format

Share Document