scholarly journals Geometric entanglement of a photon and spin qubits in diamond

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yuhei Sekiguchi ◽  
Yuki Yasui ◽  
Kazuya Tsurumoto ◽  
Yuta Koga ◽  
Raustin Reyes ◽  
...  

AbstractGeometric nature, which appears in photon polarization, also appears in spin polarization under a zero magnetic field. These two polarized quanta, one travelling in vacuum and the other staying in matter, behave the same as geometric quantum bits or qubits, which are promising for noise resilience compared to the commonly used dynamic qubits. Here we show that geometric photon and spin qubits are entangled upon spontaneous emission with the help of the spin − orbit entanglement inherent in a nitrogen-vacancy center in diamond. The geometric spin qubit is defined in a degenerate subsystem of spin triplet electrons and manipulated with a polarized microwave. An experiment shows an entanglement state fidelity of 86.8%. The demonstrated entangled emission, combined with previously demonstrated entangled absorption, generates purely geometric entanglement between remote matters in a process that is insensitive of time, frequency, and space mode matching, which paves the way for building a noise-resilient quantum repeater network or a quantum internet.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
George Gillard ◽  
Ian M. Griffiths ◽  
Gautham Ragunathan ◽  
Ata Ulhaq ◽  
Callum McEwan ◽  
...  

AbstractCombining external control with long spin lifetime and coherence is a key challenge for solid state spin qubits. Tunnel coupling with electron Fermi reservoir provides robust charge state control in semiconductor quantum dots, but results in undesired relaxation of electron and nuclear spins through mechanisms that lack complete understanding. Here, we unravel the contributions of tunnelling-assisted and phonon-assisted spin relaxation mechanisms by systematically adjusting the tunnelling coupling in a wide range, including the limit of an isolated quantum dot. These experiments reveal fundamental limits and trade-offs of quantum dot spin dynamics: while reduced tunnelling can be used to achieve electron spin qubit lifetimes exceeding 1 s, the optical spin initialisation fidelity is reduced below 80%, limited by Auger recombination. Comprehensive understanding of electron-nuclear spin relaxation attained here provides a roadmap for design of the optimal operating conditions in quantum dot spin qubits.


2016 ◽  
Vol 752 ◽  
pp. 012001 ◽  
Author(s):  
I Jakobi ◽  
S A Momenzadeh ◽  
F Fávaro de Oliveira ◽  
J Michl ◽  
F Ziem ◽  
...  
Keyword(s):  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
A. J. Landig ◽  
J. V. Koski ◽  
P. Scarlino ◽  
C. Müller ◽  
J. C. Abadillo-Uriel ◽  
...  

Abstract Spin qubits and superconducting qubits are among the promising candidates for realizing a solid state quantum computer. For the implementation of a hybrid architecture which can profit from the advantages of either approach, a coherent link is necessary that integrates and controllably couples both qubit types on the same chip over a distance that is several orders of magnitude longer than the physical size of the spin qubit. We realize such a link with a frequency-tunable high impedance SQUID array resonator. The spin qubit is a resonant exchange qubit hosted in a GaAs triple quantum dot. It can be operated at zero magnetic field, allowing it to coexist with superconducting qubits on the same chip. We spectroscopically observe coherent interaction between the resonant exchange qubit and a transmon qubit in both resonant and dispersive regimes, where the interaction is mediated either by real or virtual resonator photons.


Science ◽  
2019 ◽  
Vol 366 (6462) ◽  
pp. 238-241 ◽  
Author(s):  
Yufan Li ◽  
Xiaoying Xu ◽  
M.-H. Lee ◽  
M.-W. Chu ◽  
C. L. Chien

Magnetic flux quantization is one of the defining properties of a superconductor. We report the observation of half-integer magnetic flux quantization in mesoscopic rings of superconducting β-Bi2Pd thin films. The half-quantum fluxoid manifests itself as a π phase shift in the quantum oscillation of the superconducting critical temperature. This result verifies unconventional superconductivity of β-Bi2Pd and is consistent with a spin-triplet pairing symmetry. Our findings may have implications for flux quantum bits in the context of quantum computing.


2007 ◽  
Vol 05 (05) ◽  
pp. 667-672
Author(s):  
G. P. BERMAN ◽  
A. R. BISHOP ◽  
F. BORGONOVI ◽  
V. I. TSIFRINOVICH

We propose a scheme which implements a controllable change of the state of the target spin qubit in such a way that both the control and the target spin qubits remain in their ground states. The interaction between the two spins is mediated by an auxiliary spin, which can transfer to its excited state. Our scheme suggests a possible relationship between the gate and adiabatic quantum computation.


2015 ◽  
Vol 184 ◽  
pp. 173-182 ◽  
Author(s):  
M. S. Blok ◽  
N. Kalb ◽  
A. Reiserer ◽  
T. H. Taminiau ◽  
R. Hanson

Single defect centers in diamond have emerged as a powerful platform for quantum optics experiments and quantum information processing tasks. Connecting spatially separated nodes via optical photons into a quantum network will enable distributed quantum computing and long-range quantum communication. Initial experiments on trapped atoms and ions as well as defects in diamond have demonstrated entanglement between two nodes over several meters. To realize multi-node networks, additional quantum bit systems that store quantum states while new entanglement links are established are highly desirable. Such memories allow for entanglement distillation, purification and quantum repeater protocols that extend the size, speed and distance of the network. However, to be effective, the memory must be robust against the entanglement generation protocol, which typically must be repeated many times. Here we evaluate the prospects of using carbon nuclear spins in diamond as quantum memories that are compatible with quantum networks based on single nitrogen vacancy (NV) defects in diamond. We present a theoretical framework to describe the dephasing of the nuclear spins under repeated generation of NV spin-photon entanglement and show that quantum states can be stored during hundreds of repetitions using typical experimental coupling parameters. This result demonstrates that nuclear spins with weak hyperfine couplings are promising quantum memories for quantum networks.


Sign in / Sign up

Export Citation Format

Share Document