scholarly journals Coupled social and land use dynamics affect dietary choice and agricultural land-use extent

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Saptarshi Pal ◽  
Chris T. Bauch ◽  
Madhur Anand

AbstractDietary patterns have long been a driver of global land use. Increasingly, they also respond to it, in part because of social processes that support adoption of eco-conscious diets. Here we develop a coupled social-and-land use mathematical model parameterised for 153 countries. We project global land use for future population, income, and agricultural yield using our coupled dynamical model. We find that coupled social-and-land feedbacks can alter the peak global land use for agriculture by up to 2 billion hectares, depending on the parameter regime. Across all yield scenarios, the model projects that social dynamics will cause an increase in eco-conscious dietary behaviour until the middle of the 21st century, after which it will decline in response to declining land use caused by a shrinking global population. The model also exhibits a regime of synergistic effects whereby simultaneous changes to multiple socio-economic parameters are required to change land use projections. This research demonstrates the value of including coupled social-and-land feedbacks in land use projections.

2020 ◽  
Author(s):  
Saptarshi Pal ◽  
Chris T. Bauch ◽  
Madhur Anand

AbstractDietary patterns have long been a driver of global land use. Increasingly, they also respond to it, in part because of social forces that support adoption of sustainable diets. Here we develop a coupled social-land use dynamics model parameterised for 164 countries. We project global land use under 20 scenarios for future population, income, and agricultural yield. When future yields are low and/or population size is high, coupled social-land feedbacks can reduce the peak global land use by up to 2 billion hectares, if socio-economic barriers to adopting a sustainable diet are sufficiently low. In contrast, when population growth is low or yield is high, reductions in income elasticity can increase peak land use by 100 million hectares. The model also exhibits a regime of synergistic effects whereby simultaneous changes to multiple social and economic parameters are required to change land use projections. This research demonstrates the value of including coupled social-land feedbacks in land use projections.


2021 ◽  
Author(s):  
Karina Winkler ◽  
Richard Fuchs ◽  
Mark Rounsevell ◽  
Martin Herold

<p>Land use change is a major contributor to greenhouse gas emissions and biodiversity loss and, hence, a key topic for current sustainability debates and climate change mitigation. To understand its impacts, accurate data of global land use change and an assessment of its extent, dynamics, causes and interrelations are crucial. However, although numerous observational data is publicly available (e.g. from remote sensing), the processes and drivers of land use change are not yet fully understood. In particular, current global-scale land change assessments still lack either temporal consistency, spatial explicitness or thematic detail. <br>Here, we analyse the patterns of global land use change and its underlying drivers based on our novel high-resolution (~1x1 km) dataset of global land use/cover (LULC) change from 1960-2019, HILDA+ (Historic Land Dynamics Assessment+). The data harmonises multiple Earth Observation products and FAO land use statistics. It covers all transitions between six major LULC categories (urban areas, cropland, pasture/rangeland, forest, unmanaged grass-/shrubland and no/sparse vegetation).<br>On this basis, we show (1) a classification of global LULC transitions into major processes of land use change, (2) a quantification of their spatiotemporal patterns and (3) an identification of their major socioeconomic and environmental drivers across the globe. By using temporal cross-correlation, we study the influence of selected drivers on processes such as agricultural land abandonment, deforestation, forest degradation or urbanisation.<br>With this, we are able to map the patterns and drivers of global land use change at unprecedented resolution and compare them for different world regions. Giving new data-driven and quantitative insights into a largely untouched field, we identify tele-coupled globalisation patterns and climate change as important influencing factors for land use dynamics. Learning from the recent past, understanding how socio-economic and environmental factors affect the way humans use the land surface is essential for estimating future impacts of land use change and implementing measures of climate mitigation and sustainable land use policies.</p>


2021 ◽  
Vol 16 (12) ◽  
pp. 125012
Author(s):  
Charles A Taylor ◽  
James Rising

Abstract Agricultural land use has recently peaked, both globally and across country income groups, after centuries of expansion and intensification. Such shifts in the evolution of global land use have implications for food security, biodiversity loss, and carbon emissions. While economic growth and land use are closely linked, it is difficult to determine the extent to which the relationship is causal, deterministic, and unidirectional. Here we utilize gridded datasets to study long-term global land use change from 1780 to 2010. We find evidence for an economic tipping point, where land use intensifies with economic development at low income levels, then reverses after incomes reach a critical threshold. Cropland peaks around $5000 GDP per capita then declines. We utilize a Markov model to show that this reversal emerges from a variety of divergent land use pathways, in particular the expansion of protected areas and a reduction in land use lock-in. Our results suggest that economic development remains a powerful driver of land use change with implications for the future of natural ecosystems in the context of continued population and income growth.


2013 ◽  
pp. 79-94
Author(s):  
Ngoc Luu Bich

Climate change (CC) and its impacts on the socio-economy and the development of communities has become an issue causing very special concern. The rise in global temperatures, in sea levels, extreme weather phenomena, and salinization have occurred more and more and have directly influenced the livelihoods of rural households in the Red River Delta – one of the two regions projected to suffer strongly from climate change in Vietnam. For farming households in this region, the major and traditional livelihoods are based on main production materials as agricultural land, or aquacultural water surface Changes in the land use of rural households in the Red River Delta during recent times was influenced strongly by the Renovation policy in agriculture as well as the process of industrialization and modernization in the country. Climate change over the past 5 years (2005-2011) has started influencing household land use with the concrete manifestations being the reduction of the area cultivated and the changing of the purpose of land use.


Sign in / Sign up

Export Citation Format

Share Document