2008 ◽  
Vol 17 (2) ◽  
pp. 127 ◽  
Author(s):  
H. RISKU-NORJA ◽  
R. HIETALA ◽  
H. VIRTANEN

The potential for and environmental consequences of localising primary production of food were investigated by considering different food consumption patterns, based on conventional and organic production. Environmental impact was assessed according to agricultural land use and numbers of production animals, both of which depend on food consumption. The results were quantified in terms of nutrient balances, greenhouse gas and acid emissions and the diversity of crop cultivation, which indicate eutrophication of watersheds, climate change and landscape changes, respectively. The study region was able to satisfy its own needs for all farming and food consumption scenarios. Dietary choice had a marked impact on agricultural land use and on the environmental parameters considered. Organic farming for local food production resulted in higher greenhouse gas emissions. Compared with mixed diets, the vegetarian diet was associated with lower emissions and nutrient surpluses, but also with reduced crop diversity. The arable areas allocated to leys and pastures were also smaller. The study area represents a predominantly rural region and is a net exporter of agricultural produce. Therefore, only part of the environmental impact of food production results from local needs. Both the differences among the dietary options and the overall environmental benefit of localised primary food production were greatly reduced when considering total agricultural production of the region. Much of the negative impact of agriculture is due to food consumption in the densely populated urban areas, but the consequences are mainly felt in the production areas. The environmental impacts of localisation of primary food production for the rural areas are small and inconsistent. The results indicate the importance of defining ‘local’ on a regional basis and including the urban food sinks in impact assessment.;


Land ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 24
Author(s):  
Mariana Vallejo ◽  
M. Isabel Ramírez ◽  
Alejandro Reyes-González ◽  
Jairo López-Sánchez ◽  
Alejandro Casas

The Tehuacán-Cuicatlán Valley, Mexico, is the semiarid region with the richest biodiversity of North America and was recently recognized as a UNESCO's World Heritage site. Original agricultural practices remain to this day in agroforestry systems (AFS), which are expressions of high biocultural diversity. However, local people and researchers perceive a progressive decline both in natural ecosystems and AFS. To assess changes in location and extent of agricultural land use, we carried out a visual interpretation of very-high resolution imagery and field work, through which we identified AFS and conventional agricultural systems (CAS) from 1995 to 2003 and 2012. We analyzed five communities, representative of three main ecological and agricultural zones of the region. We assessed agricultural land use changes in relation to conspicuous landscape features (relief, rivers, roads, and human settlements). We found that natural ecosystems cover more than 85% of the territory in each community, and AFS represent 51% of all agricultural land. Establishment and permanence of agricultural lands were strongly influenced by gentle slopes and the existence of roads. Contrary to what we expected, we recorded agricultural areas being abandoned, thus favoring the regeneration of natural ecosystems, as well as a 9% increase of AFS over CAS. Agriculture is concentrated near human settlements. Most of the studied territories are meant to preserve natural ecosystems, and traditional AFS practices are being recovered for biocultural conservation.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 364
Author(s):  
Sahar Shahpari ◽  
Janelle Allison ◽  
Matthew Tom Harrison ◽  
Roger Stanley

Agricultural land-use change is a dynamic process that varies as a function of social, economic and environmental factors spanning from the local to the global scale. The cumulative regional impacts of these factors on land use adoption decisions by farmers are neither well accounted for nor reflected in agricultural land use planning. We present an innovative spatially explicit agent-based modelling approach (Crop GIS-ABM) that accounts for factors involved in farmer decision making on new irrigation adoption to enable land-use predictions and exploration. The model was designed using a participatory approach, capturing stakeholder insights in a conceptual model of farmer decisions. We demonstrate a case study of the factors influencing the uptake of new irrigation infrastructure and land use in Tasmania, Australia. The model demonstrates how irrigated land-use expansion promotes the diffusion of alternative crops in the region, as well as how coupled social, biophysical and environmental conditions play an important role in crop selection. Our study shows that agricultural land use reflected the evolution of multiple simultaneous interacting biophysical and socio-economic drivers, including soil and climate type, crop and commodity prices, and the accumulated effects of interactive decisions of farmers.


Sign in / Sign up

Export Citation Format

Share Document