scholarly journals Cryptogamic organisms are a substantial source and sink for volatile organic compounds in the Amazon region

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Achim Edtbauer ◽  
Eva Y. Pfannerstill ◽  
Ana Paula Pires Florentino ◽  
Cybelli G. G. Barbosa ◽  
Emilio Rodriguez-Caballero ◽  
...  

AbstractCryptogamic organisms such as bryophytes and lichens cover most surfaces within tropical forests, yet their impact on the emission of biogenic volatile organic compounds is unknown. These compounds can strongly influence atmospheric oxidant levels as well as secondary organic aerosol concentrations, and forest canopy leaves have been considered the dominant source of these emissions. Here we present cuvette flux measurements, made in the Amazon rainforest between 2016–2018, and show that common bryophytes emit large quantities of highly reactive sesquiterpenoids and that widespread lichens strongly uptake atmospheric oxidation products. A spatial upscaling approach revealed that cryptogamic organisms emit sesquiterpenoids in quantities comparable to current canopy attributed estimates, and take up atmospheric oxidation products at rates comparable to hydroxyl radical chemistry. We conclude that cryptogamic organisms play an important and hitherto overlooked role in atmospheric chemistry above and within tropical rainforests.

2020 ◽  
Author(s):  
Dianne Sanchez ◽  
Roger Seco ◽  
Dasa Gu ◽  
Alex Guenther ◽  
John Mak ◽  
...  

Abstract. We report OH reactivity observations by a chemical ionization mass spectrometer – comparative reactivity method (CIMS-CRM) instrument in a suburban forest of the Seoul Metropolitan Area (SMA) during Korea US Air Quality Study (KORUS-AQ 2016) from mid-May to mid-June of 2016. A comprehensive observational suite was deployed to quantify reactive trace gases inside of the forest canopy including a high-resolution proton transfer reaction time of flight mass spectrometer (PTR-ToF-MS). An average OH reactivity of 30.7 ± 5.1 s−1 was observed, while the OH reactivity calculated from CO, NO + NO2 (NOx), ozone (O3), sulfur dioxide (SO2), and 14 volatile organic compounds (VOCs) was 11.8 ± 1.0 s−1. An analysis of 346 peaks from the PTR-ToF-MS accounted for an additional 6.0 ± 2.2 s−1 of the total measured OH reactivity, leaving 42.0 % missing OH reactivity. The missing OH reactivity most likely comes from VOC oxidation products of both biogenic and anthropogenic origin.


2015 ◽  
Vol 15 (20) ◽  
pp. 12029-12041 ◽  
Author(s):  
T. Mochizuki ◽  
Y. Miyazaki ◽  
K. Ono ◽  
R. Wada ◽  
Y. Takahashi ◽  
...  

Abstract. We conducted simultaneous measurements of concentrations and above-canopy fluxes of isoprene and α-pinene, along with their oxidation products in aerosols in a Larix kaempferi (Japanese larch) forest in summer 2012. Vertical profiles of isoprene showed the maximum concentration near the forest floor with a peak around noon, whereas oxidation products of isoprene, i.e., methacrolein (MACR) and methyl vinyl ketone (MVK), showed higher concentrations near the canopy level of the forest. The vertical profile suggests large emissions of isoprene near the forest floor, likely due to Dryopteris crassirhizoma (a fern species), and the subsequent reaction within the canopy. The concentrations of α-pinene also showed highest values near the forest floor, with maximums in the early morning and late afternoon. The vertical profiles of α-pinene suggest its large emissions from soil and litter in addition to emissions from L. kaempferi leaves at the forest site. Isoprene and its oxidation products in aerosols exhibited similar diurnal variations within the forest canopy, providing evidence of secondary organic aerosol (SOA) formation via oxidation of isoprene most likely emitted from the forest floor. Although high abundance of α-pinene was observed in the morning, its oxidation products in aerosols showed peaks in daytime, due to a time lag between the emission and atmospheric reactions of α-pinene to form SOA. Positive matrix factorization (PMF) analysis indicated that anthropogenic influence is the most important factor contributing to the elevated concentrations of molecular oxidation products of isoprene- (> 64 %) and α-pinene-derived SOA (> 57 %). The combination of the measured fluxes and vertical profiles of biogenic volatile organic compounds (BVOCs) suggests that the inflow of anthropogenic precursors/aerosols likely enhanced the formation of both isoprene SOA and α-pinene SOA within the forest canopy even when the BVOC flux was relatively low. This study highlights the importance of intra-canopy processes that promote biogenic SOA formation in the presence of significant inflow of oxidants together with anthropogenic aerosols and their precursors.


2015 ◽  
Vol 15 (7) ◽  
pp. 10739-10771 ◽  
Author(s):  
T. Mochizuki ◽  
Y. Miyazaki ◽  
K. Ono ◽  
R. Wada ◽  
Y. Takahashi ◽  
...  

Abstract. We conducted simultaneous measurements of concentrations and above-canopy fluxes of isoprene and α-pinene, along with their oxidation products in aerosols in a Larix kaempferi (Japanese larch) forest in summer 2012. Vertical profiles of isoprene showed the maximum concentration near the forest floor with a peak around noon, whereas oxidation products of isoprene, i.e., methacrolein (MACR) and methyl vinyl ketone (MVK), showed higher concentrations near the canopy level of the forest. The vertical profile suggests large emissions of isoprene near the forest floor, likely due to Dryopteris crassirhizoma (a fern species), and the subsequent reaction within the canopy. The concentrations of α-pinene also showed highest values near the forest floor with maximums in the early morning and late afternoon. The vertical profiles of α-pinene suggest its large emissions from soil and litter in addition to emissions from L. kaempferi leaves at the forest site. Isoprene and its oxidation products in aerosols exhibited similar diurnal variations within the forest canopy, providing evidence for secondary organic aerosol (SOA) formation via oxidation of isoprene most likely emitted from the forest floor. Although high abundance of α-pinene was observed in the morning, its oxidation products in aerosols showed peaks in daytime, due to a time lag between the emission and atmospheric reactions of α-pinene to form SOA. Positive matrix factorization (PMF) analysis indicated that anthropogenic influence is the most important factor contributing to the elevated concentrations of molecular oxidation products of isoprene- (> 64%) and α-pinene-derived SOA (> 57%). The combination of the measured fluxes and vertical profiles of biogenic volatile organic compounds (BVOCs) suggests that the inflow of anthropogenic precursors/aerosols likely enhanced the formation of both isoprene- and α-pinene-SOA within the forest canopy even when the BVOC flux was relatively low. This study highlights the importance of intra-canopy processes that promote biogenic SOA formation in the presence of significant inflow of anthropogenic aerosols and their precursors.


2021 ◽  
Vol 14 (12) ◽  
pp. 8019-8039
Author(s):  
Lukas Fischer ◽  
Martin Breitenlechner ◽  
Eva Canaval ◽  
Wiebke Scholz ◽  
Marcus Striednig ◽  
...  

Abstract. We present first eddy covariance flux measurements with the PTR3-TOF-MS, a novel proton transfer time of flight reaction mass spectrometer. During 3 weeks in spring 2016, the instrument recorded 10 Hz data of biogenic volatile organic compounds above a boreal forest, on top of a measurement tower at the SMEAR (Station for Measuring Ecosystem –Atmosphere Relations) II station in Hyytiälä, Finland. Flux and concentration data of isoprene, monoterpenes, and sesquiterpenes were compared to the literature. Due to the improved instrument sensitivity and a customized wall-less inlet design, we could detect fluxes of semi-volatile and low-volatility organic compounds with less than single-digit picomol per square meter per second (pmolm-2s-1) values for the first time. These compounds include sesquiterpene oxidation products and diterpenes. Daytime diterpene fluxes were in the range of 0.05 to 0.15 pmolm-2s-1, which amounts to about 0.25 % to 0.5 % of the daytime sesquiterpene flux above canopy.


2018 ◽  
Author(s):  
Mari Mäki ◽  
Hermanni Aaltonen ◽  
Jussi Heinonsalo ◽  
Heidi Hellén ◽  
Jukka Pumpanen ◽  
...  

Abstract. Vegetation emissions of volatile organic compounds (VOCs) are intensively studied world-wide because oxidation products of VOCs contribute to atmospheric processes, but the quantities by which different species of VOCs are produced by soil, or how effectively belowground VOCs are released into the atmosphere from soil remains largely unknown. This is the first published study that measures belowground VOC concentrations at different depths in a podzol combined with simultaneous soil surface flux measurements in a boreal coniferous forest. More than 50 VOCs, dominated by monoterpenes and sesquiterpenes, were detected in the air space in the soil during the two measurement campaigns. Organic forest soil was a significant monoterpene source as it contained fresh isoprenoid-rich litter, and the concentrations of monoterpenes were comparable to the VOC concentrations in the air above the coniferous forest. Belowground monoterpene concentrations were largely decoupled from forest floor monoterpene fluxes; thus, it seems that production processes and storages of VOCs partly differ from those VOCs that are simultaneously emitted from the soil surface. Relatively high isoprenoid concentrations were measured under snow cover, which indicates that snow and ice cover hinders gas diffusion and causes belowground accumulation of VOCs when the activity of vegetation is very low.


2021 ◽  
Author(s):  
Lukas Fischer ◽  
Martin Breitenlechner ◽  
Eva Canaval ◽  
Wiebke Scholz ◽  
Marcus Striednig ◽  
...  

Abstract. We present first eddy covariance flux measurements with the PTR3-TOF-MS, a novel proton-transfer-reaction mass-spectrometer (PTR-MS). During three weeks in spring 2016 the instrument recorded 10 Hz BVOC data on top of the SMEAR II tower in Hyytiälä, Finland. Flux and concentration data of isoprene, monoterpenes and sesquiterpenes were compared to the literature. Due to the improved instrument sensitivity and a customized “wall less” inlet design we could detect a number of fluxes of semi-volatile and low volatile organic compounds (SVOC and LVOC) with less than single digit picomol/m2/s values for the first time. These compounds include sesquiterpene oxidation products and diterpenes. Daytime diterpene fluxes were in the range of 0.05 to 0.15 picomol/m2/s, which amounts to about 0.25 % to 0.5 % of the daytime sesquiterpene flux above canopy.


2018 ◽  
Vol 18 (19) ◽  
pp. 13839-13863 ◽  
Author(s):  
Heidi Hellén ◽  
Arnaud P. Praplan ◽  
Toni Tykkä ◽  
Ilona Ylivinkka ◽  
Ville Vakkari ◽  
...  

Abstract. The concentrations of terpenoids (isoprene; monoterpenes, MTs; and sesquiterpenes, SQTs) and oxygenated volatile organic compounds (OVOCs; i.e. aldehydes, alcohols, acetates and volatile organic acids, VOAs) were investigated during 2 years at a boreal forest site in Hyytiälä, Finland, using in situ gas chromatograph mass spectrometers (GC-MSs). Seasonal and diurnal variations of terpenoid and OVOC concentrations as well as their relationship with meteorological factors were studied. Of the VOCs examined, C2–C7 unbranched VOAs showed the highest concentrations, mainly due to their low reactivity. Of the terpenoids, MTs showed the highest concentrations at the site, but seven different highly reactive SQTs were also detected. The monthly and daily mean concentrations of most terpenoids, aldehydes and VOAs were highly dependent on the temperature. The highest exponential correlation with temperature was found for a SQT (β-caryophyllene) in summer. The diurnal variations in the concentrations could be explained by sources, sinks and vertical mixing. The diurnal variations in MT concentrations were strongly affected by vertical mixing. Based on the temperature correlations and mixing layer height (MLH), simple proxies were developed for estimating the MT and SQT concentrations. To estimate the importance of different compound groups and compounds in local atmospheric chemistry, reactivity with main oxidants (hydroxyl radical, OH; nitrate radical, NO3; and ozone, O3) and production rates of oxidation products (OxPRs) were calculated. The MTs dominated OH and NO3 radical chemistry, but the SQTs greatly impacted O3 chemistry, even though the concentrations of SQT were 30 times lower than the MT concentrations. SQTs were also the most important for the production of oxidation products. Since the SQTs show high secondary organic aerosol (SOA) yields, the results clearly indicate the importance of SQTs for local SOA production.


Author(s):  
Hind A. A. Al-Abadleh

Extensive research has been done on the processes that lead to the formation of secondary organic aerosol (SOA) including atmospheric oxidation of volatile organic compounds (VOCs) from biogenic and anthropogenic...


2010 ◽  
Vol 10 (2) ◽  
pp. 3861-3892 ◽  
Author(s):  
J. G. Murphy ◽  
D. E. Oram ◽  
C. E. Reeves

Abstract. In this paper we describe measurements of volatile organic compounds (VOCs) made using a Proton Transfer Reaction Mass Spectrometer (PTR-MS) aboard the UK Facility for Atmospheric Airborne Measurements during the African Monsoon Multidisciplinary Analyses (AMMA) campaign. Observations were made during approximately 85 h of flying time between 17 July and 17 August 2006, above an area between 4° N and 18° N and 3° W and 4° E, encompassing ocean, mosaic forest, and the Sahel desert. High time resolution observations of counts at mass to charge (m/z) ratios of 42, 59, 69, 71, and 79 were used to calculate mixing ratios of acetonitrile, acetone, isoprene, the sum of methyl vinyl ketone and methacrolein, and benzene, respectively using laboratory-derived humidity-dependent calibration factors. Strong spatial associations between vegetation and isoprene and its oxidation products were observed in the boundary layer, consistent with biogenic emissions followed by rapid atmospheric oxidation. Acetonitrile, benzene, and acetone were all enhanced in airmasses which had been heavily influenced by biomass burning. Benzene and acetone were also elevated in airmasses with urban influence from cities such as Lagos, Cotonou, and Niamey. The observations provide evidence that both deep convection and mixing associated with fair-weather cumulus were responsible for vertical redistribution of VOCs emitted from the surface. Profiles over the ocean showed a depletion of acetone in the marine boundary layer, but no significant decrease for acetonitrile.


2021 ◽  
Author(s):  
Christopher Cantrell ◽  
Vincent Michoud ◽  
Paola Formenti ◽  
Jean-Francois Doussin ◽  
Stephanie Alhajj Moussa ◽  
...  

<p>It is well known that the high population density of urban regions leads to significant degradation of the quality of the air because of the emissions of pollutants that are by-products of energy production, transportation, and industry. The composition and chemistry of urban air has been studied for many decades and these studies have led to detailed understanding of the factors controlling, for example, the formation of ozone, peroxyacetyl nitrate and other secondary species. In the last 20 to 30 years, significant progress has been made in reducing emissions of volatile organic compounds (VOCs) and oxides of nitrogen (NO<sub>x</sub>) in urban atmospheres. Substantial reductions in the abundance of secondary compounds, though, have been more elusive.</p><p>Research has continued to reveal more and more details of the complex processes involved in the atmospheric degradation of wide varieties of volatile organic compounds (VOCs) of anthropogenic and biospheric (BVOCs) origins. BVOCs include isoprene, monoterpenes and sesquiterpenes, and oxygenated VOCs (OVOCs, such as small alcohols). Emissions of BVOCs depend on several factors such as plant or tree species, temperature, and photosynthetically active radiation. They consist almost exclusively of unsaturated compounds with chemistry somewhat different from those of typical urban organic compound emissions. Oxidation of VOCs can lead to molecules of low volatility that are prone to uptake into the aerosol phase.</p><p>Recent studies conducted in megacities such as Paris, Mexico City, Los Angeles and those in China have led to significant advances in our understanding of the chemical evolution of urban plumes. However, important scientific questions remain on how mixing of anthropogenic and biogenic air masses modifies the composition of urban plumes and hence their impacts. Indeed, the proximity of cites to areas of strong biogenic emissions is not unusual. Many major cities at mid-latitudes are surrounded by forested areas.</p><p>ACROSS (Atmospheric ChemistRy Of the Suburban foreSt) is an integrative, innovative, multi-scale project awarded under the “Make Our Planet Great Again” (MOPGA) framework that seeks to definitively improve understanding of the impacts of mixing urban and biogenic air masses on the oxidation of atmospheric VOCs. The ACROSS working hypothesis is that this leads to changes in the production of oxygenated VOCs whose properties (e.g. vapor pressures) alter their importance in incorporation into SOA and their roles in production of ozone and other secondary species. Changes are also expected in the efficiency of radical recycling affecting the atmospheric oxidative capacity. Particularly important is NO<sub>x</sub> transport to suburban biogenic environments and the resulting modification of key chemical processes.</p><p>A key highlight of ACROSS is an intensive, multi-platform measurement campaign in the summer of 2022. It will use instruments staged on an airborne platform, a tower in the Rambouillet Forest near Paris, and other ground sites. The data collected from this campaign will be analyzed and studied to extract information about tropospheric oxidation chemistry generally, but also changes observed in the situation of mixed urban and biogenic air masses.</p><p>This presentation will summarize plans for the ACROSS campaign.</p>


Sign in / Sign up

Export Citation Format

Share Document