scholarly journals Adenosine A2 receptor (ADORA2 )

2012 ◽  
Vol 5 (43) ◽  
pp. 1146-1146
1994 ◽  
Vol 267 (3) ◽  
pp. 335-341 ◽  
Author(s):  
Hiromi Nonaka ◽  
Michio Ichimura ◽  
Masami Takeda ◽  
Yoshiko Nonaka ◽  
Jyunichi Shimada ◽  
...  

1992 ◽  
Vol 281 (3) ◽  
pp. 631-635 ◽  
Author(s):  
B N Cronstein ◽  
K A Haines

Generation of superoxide anion (O2-) in response to occupancy of neutrophil chemoattractant receptors requires both early events (‘triggering’) and sustained signals (‘activation’). We have previously demonstrated that occupancy of adenosine A2 receptors inhibits O2- generation by neutrophils. In parallel, adenosine-receptor occupancy promotes association of bound N-formylmethionyl-leucyl-phenylalanine (fMLP) receptors with the cytoskeleton, a process associated with termination of neutrophil activation (stimulus-response uncoupling). We undertook this study to determine whether inhibition of neutrophil function by adenosine-receptor occupancy requires intact actin filaments and to examine the effect of adenosine-receptor occupancy on the stimulated generation of intracellular signals involved in neutrophil triggering and activation. Occupancy of adenosine A2 receptors by 5′-N-ethylcarboxamidoadenosine (NECA, 1 microM) significantly increased (130 +/- 1% of control, P less than 0.001, n = 3) association of [3H]fMLP with cytoskeletal preparations. Cytochalasin B (5 micrograms/ml), an agent which disrupts actin filaments, completely blocked association of [3H]fMLP with cytoskeletal preparations, as previously reported. However, NECA markedly increased association of [3H]fMLP with the cytoskeleton even in the presence of cytochalasin B (P less than 0.0002). Moreover, NECA did not significantly affect either the early (30s) or the late (5 min) formation of actin filaments after stimulation by chemoattractant (fMLP, 0.1-100 nM). Cytochalasin B markedly inhibited actin-filament formation by stimulated neutrophils, and NECA did not reverse the effect of cytochalasin B on actin-filament formation. Adenosine-receptor occupancy did not affect the rapid peak in diacylglycerol generation (less than or equal to 15 s) from either [3H]arachidonate- or [14C]glycerol-labelled phospholipid pools. However, as would be predicted if occupancy of the adenosine receptor was a signal for early termination of cell activation, NECA (1 microM) markedly diminished the slow sustained generation of diacylglycerol. These results suggest that adenosine-A2-receptor occupancy does not affect triggering of the neutrophil, but that occupancy of adenosine receptors is an early signal for the termination of neutrophil activation, i.e. the ‘premature’ finish of signal transduction. Moreover, these data indicate that at least two pathways are available for increasing the association of ligated chemoattractant receptors with the cytoskeleton of neutrophils: F-actin-dependent and -independent.


2006 ◽  
Vol 531 (1-3) ◽  
pp. 80-86 ◽  
Author(s):  
Lisa Godfrey ◽  
Luo Yan ◽  
Geoffrey D. Clarke ◽  
Catherine Ledent ◽  
Ian Kitchen ◽  
...  

1992 ◽  
Vol 263 (5) ◽  
pp. H1460-H1465 ◽  
Author(s):  
R. D. Lasley ◽  
R. M. Mentzer

The effects of adenosine in the nonischemic heart have been shown to be mediated via its binding to extracellular adenosine A1 and A2 receptors located predominantly on myocytes and endothelial cells, respectively. We tested the hypothesis that the beneficial effect of adenosine on postischemic myocardial function is mediated via an adenosine A1 receptor mechanism. Isolated rat hearts perfused at constant pressure (85 cmH2O) were subjected to 30 min of global no-flow ischemia (37 degrees C) and 45 min of reperfusion. Hearts treated with adenosine (100 microM) and the adenosine A1 receptor agonist N6-cyclohexyladenosine (CHA; 0.25 microM) recovered 72 +/- 4 and 70 +/- 4% of preischemic left ventricular developed pressures (LVDP), respectively, after 45 min of reperfusion compared with untreated hearts (54 +/- 3% of preischemic LVDP). Adenosine and CHA hearts exhibited greater myocardial ATP contents than control hearts after 10 min of ischemia, but there were no differences in tissue ATP levels after 30 min of ischemia. In contrast, hearts treated with the adenosine A2 receptor agonist phenylaminoadenosine (0.25 microM) failed to demonstrate improved postischemic function (52 +/- 5%). The addition of the A1-selective antagonist 8-cyclopentyl-1,3-dipropylxanthine blocked the cardioprotective effect of adenosine (57 +/- 4%). These results suggest that adenosine enhances postischemic myocardial function via an A1 receptor mechanism.


Sign in / Sign up

Export Citation Format

Share Document