multiprotein complex
Recently Published Documents


TOTAL DOCUMENTS

307
(FIVE YEARS 49)

H-INDEX

61
(FIVE YEARS 4)

2022 ◽  
Vol 12 ◽  
Author(s):  
Qi Jiang ◽  
Xin Wang ◽  
Enyu Huang ◽  
Qiao Wang ◽  
Chengping Wen ◽  
...  

Inflammasome is a cytoplasmic multiprotein complex that facilitates the clearance of exogenous microorganisms or the recognition of endogenous danger signals, which is critically involved in innate inflammatory response. Excessive or abnormal activation of inflammasomes has been shown to contribute to the development of various diseases including autoimmune diseases, neurodegenerative changes, and cancers. Rheumatoid arthritis (RA) is a chronic and complex autoimmune disease, in which inflammasome activation plays a pivotal role in immune dysregulation and joint inflammation. This review summarizes recent findings on inflammasome activation and its effector mechanisms in the pathogenesis of RA and potential development of therapeutic targeting of inflammasome for the immunotherapy of RA.


2021 ◽  
Author(s):  
Ananthanarayanan Kumar ◽  
Conny W.H. Yu ◽  
Juan B. Rodríguez-Molina ◽  
Xiao-Han Li ◽  
Stefan M.V. Freund ◽  
...  

Cleavage and polyadenylation factor (CPF/CPSF) is a multiprotein complex essential for mRNA 3′ end processing in eukaryotes. It contains an endonuclease that cleaves pre-mRNAs, and a polymerase that adds a poly(A) tail onto the cleaved 3′ end. Several CPF subunits, including Fip1, contain intrinsically disordered regions (IDRs). IDRs within multiprotein complexes can be flexible, or can become ordered upon interaction with binding partners. Here, we show that yeast Fip1 anchors the poly(A) polymerase Pap1 onto CPF via an interaction with zinc finger 4 of another CPF subunit, Yth1. We also reconstitute a fully recombinant 850-kDa CPF. By incorporating selectively labeled Fip1 into recombinant CPF, we could study the dynamics of Fip1 within the megadalton complex using nuclear magnetic resonance (NMR) spectroscopy. This reveals that a Fip1 IDR that connects the Yth1- and Pap1-binding sites remains highly dynamic within CPF. Together, our data suggest that Fip1 dynamics within the 3′ end processing machinery are required to coordinate cleavage and polyadenylation.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5703
Author(s):  
Anna M. Timofeeva ◽  
Irina A. Kostrikina ◽  
Pavel S. Dmitrenok ◽  
Svetlana E. Soboleva ◽  
Georgy A. Nevinsky

In contrast to many human organs, only the human liver can self-regenerate, to some degree. Some marine echinoderms are convenient objects for studying the processes of regenerations of organs and tissues. For example, sea cucumbers Eupentacta fraudatrix can completely restore within several weeks, the internal organs and the whole body after their division into two or three parts. Therefore, these cucumbers are a very convenient model for studying the general mechanisms of regeneration. However, there is no literature data yet on which biomolecules of these cucumbers can stimulate the regeneration of organs and the whole-body processes. Studying the mechanisms of restoration is very important for modern biology and medicine, since it can help researchers to understand which proteins, enzymes, hormones, or possible complexes can play an essential role in regeneration. This work is the first to analyze the possible content of very stable protein complexes in sea cucumbers Eupentacta fraudatrix. It has been shown that their organisms contain a very stable multiprotein complex of about 2000 kDa. This complex contains 15 proteins with molecular masses (MMs) >10 kDa and 21 small proteins and peptides with MMs 2.0–8.6 kDa. It is effectively destroyed only in the presence of 3.0 M MgCl2 and, to a lesser extent, 3.0 M NaCl, while the best dissociation occurs in the presence of 8.0 M urea + 0.1 M EDTA. Our data indicate that forming a very stable proteins complex occurs due to the combination of bridges formed by metal ions, electrostatic contacts, and hydrogen bonds.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Stefano Zoroddu ◽  
Irene Marchesi ◽  
Luigi Bagella

AbstractSkeletal muscle formation represents a complex of highly organized and specialized systems that are still not fully understood. Epigenetic systems underline embryonic development, maintenance of stemness, and progression of differentiation. Polycomb group proteins play the role of gene silencing of stemness markers that regulate muscle differentiation. Enhancer of Zeste EZH2 is the catalytic subunit of the complex that is able to trimethylate lysine 27 of histone H3 and induce silencing of the involved genes. In embryonal Rhabdomyosarcoma and several other tumors, EZH2 is often deregulated and, in some cases, is associated with tumor malignancy. This review explores the molecular processes underlying the failure of muscle differentiation with a focus on the PRC2 complex. These considerations could open new studies aimed at the development of new cutting-edge therapeutic strategies in the onset of Rhabdomyosarcoma.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hadi Esmaeili Gouvarchin Ghaleh ◽  
Abdolkarim Hosseini ◽  
Hossein Aghamollaei ◽  
Mahdi Fasihi-Ramandi ◽  
Gholamhossein Alishiri ◽  
...  

Abstract The inflammasome as a multiprotein complex has a role in activating ASC and caspase-1 resulting in activating IL-1β in various infections and diseases like corona virus infection in various tissues. It was shown that these tissues are affected by COVID-19 patients. According to the current evidence, melatonin is not veridical while possessing a high safety profile, however, it possesses indirect anti-viral actions owing to its anti-oxidation, anti-inflammation, and immune improving properties. This study aims to assess the impacts of melatonin as the complementary treatments on oxidative stress agents and inflammasome activation in patients with COVID-19. Melatonin supplement (9 mg daily, orally) was provided for the patients hospitalized with a COVID-19 analysis for 14 days. For measuring IL-10, IL-1β, and TNF-α cytokines and malondialdehyde (MDA), nitric oxide (NO), and superoxide dismutase (SOD) level and the expression of CASP1 and ASC genes, blood samples were gathered from the individuals at the start and termination of the therapy. Our findings indicated that melatonin is used as a complementary treatment to reduce the levels of TNF-α and IL-1β cytokines, MDA, and NO levels in COVID-19 patients and significantly increase SOD level, however, the levels of IL-10 cytokine possesses no considerable changes. The findings revealed that genes of CASP1 and ASC were dysregulated by melatonin regulating the inflammasome complex. Based on the findings of the current study, it is found that melatonin can be effective as a medicinal supplement in decreasing the inflammasome multiprotein complex and oxidative stress along with beneficial impacts on lung cytokine storm of COVID-19 patients.


Author(s):  
Tadeo Moreno Chicano ◽  
Lea Dietrich ◽  
Naomi M. de Almeida ◽  
Mohd. Akram ◽  
Elisabeth Hartmann ◽  
...  

AbstractNitrate is an abundant nutrient and electron acceptor throughout Earth’s biosphere. Virtually all nitrate in nature is produced by the oxidation of nitrite by the nitrite oxidoreductase (NXR) multiprotein complex. NXR is a crucial enzyme in the global biological nitrogen cycle, and is found in nitrite-oxidizing bacteria (including comammox organisms), which generate the bulk of the nitrate in the environment, and in anaerobic ammonium-oxidizing (anammox) bacteria which produce half of the dinitrogen gas in our atmosphere. However, despite its central role in biology and decades of intense study, no structural information on NXR is available. Here, we present a structural and biochemical analysis of the NXR from the anammox bacterium Kuenenia stuttgartiensis, integrating X-ray crystallography, cryo-electron tomography, helical reconstruction cryo-electron microscopy, interaction and reconstitution studies and enzyme kinetics. We find that NXR catalyses both nitrite oxidation and nitrate reduction, and show that in the cell, NXR is arranged in tubules several hundred nanometres long. We reveal the tubule architecture and show that tubule formation is induced by a previously unidentified, haem-containing subunit, NXR-T. The results also reveal unexpected features in the active site of the enzyme, an unusual cofactor coordination in the protein’s electron transport chain, and elucidate the electron transfer pathways within the complex.


2021 ◽  
Author(s):  
Ananthanarayanan Kumar ◽  
Conny WH Yu ◽  
Juan B Rodríguez-Molina ◽  
Xiao-Han Li ◽  
Stefan MV Freund ◽  
...  

Cleavage and polyadenylation factor (CPF/CPSF) is a multiprotein complex essential for mRNA 3ʹ-end processing in eukaryotes. It contains an endonuclease that cleaves pre-mRNAs, and a polymerase that adds a poly(A) tail onto the cleaved 3ʹ-end. Several CPF subunits, including Fip1, contain intrinsically-disordered regions (IDRs). IDRs within multiprotein complexes can be flexible, or can become ordered upon interaction with binding partners. Here, we show that yeast Fip1 anchors the poly(A) polymerase Pap1 onto CPF via an interaction with zinc finger 4 of another CPF subunit, Yth1. We also reconstitute a fully recombinant 850-kDa CPF. By incorporating selectively-labelled Fip1 into recombinant CPF, we could study the dynamics of this single protein within the megadalton complex using nuclear magnetic resonance spectroscopy (NMR). This reveals that a Fip1 IDR that connects the Yth1- and Pap1-binding sites remains highly dynamic within CPF. Together, our data suggest that Fip1 dynamics mediate conformational transitions within the 3ʹ-end processing machinery to coordinate cleavage and polyadenylation.


Author(s):  
Maha S. Zaki ◽  
Andrea Accogli ◽  
Ghayda Mirzaa ◽  
Fatima Rahman ◽  
Hiba Mohammed ◽  
...  

AbstractThe PIDDosome is a multiprotein complex, composed by the p53-induced death domain protein 1 (PIDD1), the bipartite linker protein CRADD (also known as RAIDD) and the proform of caspase-2 that induces apoptosis in response to DNA damage. In the recent years, biallelic pathogenic variants in CRADD have been associated with a neurodevelopmental disorder (MRT34; MIM 614499) characterized by pachygyria with a predominant anterior gradient, megalencephaly, epilepsy and intellectual disability. More recently, biallelic pathogenic variants in PIDD1 have been described in a few families with apparently nonsydnromic intellectual disability. Here, we aim to delineate the genetic and radio-clinical features of PIDD1-related disorder. Exome sequencing was carried out in six consanguineous families. Thorough clinical and neuroradiological evaluation was performed for all the affected individuals as well as reviewing all the data from previously reported cases. We identified five distinct novel homozygous variants (c.2584C>T p.(Arg862Trp), c.1340G>A p.(Trp447*), c.2116_2120del p.(Val706Hisfs*30), c.1564_1565delCA p.(Gln522fs*44), and c.1804_1805del p.(Gly602fs*26) in eleven subjects displaying intellectual disability, behaviorial and psychiatric features, and a typical anterior-predominant pachygyria, remarkably resembling the CRADD-related neuroimaging pattern. In summary, we outline the phenotypic and molecular spectrum of PIDD1 biallelic variants supporting the evidence that the PIDD1/CRADD/caspase-2 signaling is crucial for normal gyration of the developing human neocortex as well as cognition and behavior.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jongmin Lee ◽  
Jung-hyun Rho ◽  
Michael H. Roehrl ◽  
Julia Y. Wang

Dermatan sulfate (DS) and autoantigen (autoAg) complexes are capable of stimulating autoreactive CD5+ B1 cells. We examined the activity of DS on CD5+ pre-B lymphoblast NFS-25 cells. CD19, CD5, CD72, PI3K, and Fas possess varying degrees of DS affinity. The three pre-BCR components, Ig heavy chain mu (IgH), VpreB, and lambda 5, display differential DS affinities, with IgH having the strongest affinity. DS attaches to NFS-25 cells, gradually accumulates in the ER, and eventually localizes to the nucleus. DS and IgH co-localize on the cell surface and in the ER. DS associates strongly with 17 ER proteins (e.g., BiP/Grp78, Grp94, Hsp90ab1, Ganab, Vcp, Canx, Kpnb1, Prkcsh, Pdia3), which points to an IgH-associated multiprotein complex in the ER. In addition, DS interacts with nuclear proteins (Ncl, Xrcc6, Prmt5, Eftud2, Supt16h) and Lck. We also discovered that DS binds GTF2I, a required gene transcription factor at the IgH locus. These findings support DS as a potential regulator of IgH in pre-B cells at protein and gene levels. We propose a (DS•autoAg)-autoBCR dual signal model in which an autoBCR is engaged by both autoAg and DS, and, once internalized, DS recruits a cascade of molecules that may help avert apoptosis and steer autoreactive B cell fate. Through its affinity with autoAgs and its control of IgH, DS emerges as a potential key player in the development of autoreactive B cells and autoimmunity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Huijuan Zhang ◽  
Dewei Zheng ◽  
Longfei Yin ◽  
Fengming Song ◽  
Ming Jiang

Mediator complex is a multiprotein complex that regulates RNA polymerase II-mediated transcription. Moreover, it functions in several signaling pathways, including those involved in response to biotic and abiotic stresses. We used virus-induced gene silencing (VIGS) to study the functions of two genes, namely OsMED16 and OsMED25 in response to biotic and abiotic stresses in rice. Both genes were differentially induced by Magnaporthe grisea (M. grisea), the causative agent of blast disease, hormone treatment, and abiotic stress. We found that both BMV: OsMED16- and BMV: OsMED25-infiltrated seedlings reduced the resistance to M. grisea by regulating the accumulation of H2O2 and expression of defense-related genes. Furthermore, BMV: OsMED16-infiltrated seedlings decreased the tolerance to cold by increasing the malondialdehyde (MDA) content and reducing the expression of cold-responsive genes.


Sign in / Sign up

Export Citation Format

Share Document