Quantum Interference and the Aharonov-Bohm Effect

1989 ◽  
Vol 260 (4) ◽  
pp. 56-62 ◽  
Author(s):  
Yoseph Imry ◽  
Richard A. Webb
Science ◽  
2020 ◽  
Vol 368 (6492) ◽  
pp. 767-771 ◽  
Author(s):  
Yurun Xie ◽  
Hailin Zhao ◽  
Yufeng Wang ◽  
Yin Huang ◽  
Tao Wang ◽  
...  

Understanding quantum interferences is essential to the study of chemical reaction dynamics. Here, we provide an interesting case of quantum interference between two topologically distinct pathways in the H + HD → H2 + D reaction in the collision energy range between 1.94 and 2.21 eV, manifested as oscillations in the energy dependence of the differential cross section for the H2 (v′ = 2, j′ = 3) product (where v′ is the vibrational quantum number and j′ is the rotational quantum number) in the backward scattering direction. The notable oscillation patterns observed are attributed to the strong quantum interference between the direct abstraction pathway and an unusual roaming insertion pathway. More interestingly, the observed interference pattern also provides a sensitive probe of the geometric phase effect at an energy far below the conical intersection in this reaction, which resembles the Aharonov–Bohm effect in physics, clearly demonstrating the quantum nature of chemical reactivity.


1994 ◽  
Vol 47 (3) ◽  
pp. 245 ◽  
Author(s):  
Vu B Ho ◽  
Michael J Morgan

The gravitational Aharonov-Bohm (AB) effect is examined in the weak-field approximation to general relativity. In analogy with the electromagnetic AB effect, we find that a gravitoelectromagnetic 4-vector potential gives rise to interference effects. A matter wave interferometry experiment, based on a modification of the gravity-induced quantum interference experiment of Colella, Overhauser and Werner (COW), is proposed to explicitly test the gravitoelectric version of the AB effect in a uniform gravitational field.


1994 ◽  
Vol 08 (05) ◽  
pp. 301-310 ◽  
Author(s):  
A.M. JAYANNAVAR ◽  
P. SINGHA DEO

We have investigated the magnetoconductance of a normal metal loop connected to ideal wires in the presence of magnetic flux. The quantum mechanical potential, V, in the loop is much higher than that in the connecting wires (V=0). The electrons with energies less than the potential height on entering the loop propagate as evanescent modes. In such a situation, the contribution to the conductance arises from two non-classical effects, namely, Aharonov-Bohm effect and quantum tunneling. For this case we show that, on application of a small magnetic field, the conductance initially always decreases, or small field magnetoconductance is always negative. This is in contrast to the behavior in the absence of the barrier, wherein the small field magnetoconductance is either positive or negative depending on the Fermi energy and other geometric details. We also discuss the possibility of a better switch action based on quantum interference effects in such structures.


Author(s):  
Sandip Tiwari

Unique nanoscale phenomena arise in quantum and mesoscale properties and there are additional intriguing twists from effects that are classical in origin. In this chapter, these are brought forth through an exploration of quantum computation with the important notions of superposition, entanglement, non-locality, cryptography and secure communication. The quantum mesoscale and implications of nonlocality of potential are discussed through Aharonov-Bohm effect, the quantum Hall effect in its various forms including spin, and these are unified through a topological discussion. Single electron effect as a classical phenomenon with Coulomb blockade including in multiple dot systems where charge stability diagrams may be drawn as phase diagram is discussed, and is also extended to explore the even-odd and Kondo consequences for quantum-dot transport. This brings up the self-energy discussion important to nanoscale device understanding.


2021 ◽  
Vol 104 (2) ◽  
Author(s):  
V. Brosco ◽  
L. Pilozzi ◽  
C. Conti
Keyword(s):  

2020 ◽  
Vol 116 ◽  
pp. 113770 ◽  
Author(s):  
T. Mrabti ◽  
Z. Labdouti ◽  
A. Mouadili ◽  
E.H. El Boudouti ◽  
B. Djafari-Rouhani

Sign in / Sign up

Export Citation Format

Share Document