The tobacco-using periodontal patient: role of the dental practitioner in tobacco cessation and periodontal disease management

BDJ ◽  
2016 ◽  
Vol 221 (2) ◽  
pp. 62-62
2021 ◽  
Vol 60 (3) ◽  
pp. S99-S102
Author(s):  
Rebecca M. Glover-Kudon ◽  
Emily F. Gates
Keyword(s):  

Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 675
Author(s):  
Samira Elmanfi ◽  
Mustafa Yilmaz ◽  
Wilson W. S. Ong ◽  
Kofi S. Yeboah ◽  
Herman O. Sintim ◽  
...  

Host cells can recognize cytosolic double-stranded DNAs and endogenous second messengers as cyclic dinucleotides—including c-di-GMP, c-di-AMP, and cGAMP—of invading microbes via the critical and essential innate immune signaling adaptor molecule known as STING. This recognition activates the innate immune system and leads to the production of Type I interferons and proinflammatory cytokines. In this review, we (1) focus on the possible role of bacterial cyclic dinucleotides and the STING/TBK1/IRF3 pathway in the pathogenesis of periodontal disease and the regulation of periodontal immune response, and (2) review and discuss activators and inhibitors of the STING pathway as immune response regulators and their potential utility in the treatment of periodontitis. PubMed/Medline, Scopus, and Web of Science were searched with the terms “STING”, “TBK 1”, “IRF3”, and “cGAS”—alone, or together with “periodontitis”. Current studies produced evidence for using STING-pathway-targeting molecules as part of anticancer therapy, and as vaccine adjuvants against microbial infections; however, the role of the STING/TBK1/IRF3 pathway in periodontal disease pathogenesis is still undiscovered. Understanding the stimulation of the innate immune response by cyclic dinucleotides opens a new approach to host modulation therapies in periodontology.


1993 ◽  
Vol 2 (1) ◽  
pp. 98-116 ◽  
Author(s):  
ROBERT J. GENCO ◽  
HARALD LÖE
Keyword(s):  

2021 ◽  
Vol 22 (2) ◽  
pp. 695
Author(s):  
Soon Chul Heo ◽  
Yu Na Kim ◽  
YunJeong Choi ◽  
Ji-Young Joo ◽  
Jae Joon Hwang ◽  
...  

Cathepsin K (CTSK) is a cysteine protease that is mainly produced from mature osteoclasts and contributes to the destruction of connective tissues and mineralized matrix as a consequence of periodontal disease (PD). However, few studies have reported its regulatory role in osteoclastogenesis-supporting cells in inflammatory conditions. Here, we investigated the role of CTSK in osteoclastogenesis-supporting cells, focusing on the modulation of paracrine function. Microarray data showed that CTSK was upregulated in PD patients compared with healthy individuals, which was further supported by immunohistochemistry and qPCR analyses performed with human gingival tissues. The expression of CTSK in the osteoclastogenesis-supporting cells, including dental pulp stem cells, gingival fibroblasts, and periodontal ligament fibroblasts (PDLFs) was significantly elevated by treatment with inflammatory cytokines such as TNFα and IL-1β. Moreover, TNFα stimulation potentiated the PDLF-mediated osteoclastogenesis of bone marrow-derived macrophages. Interestingly, small interfering RNA-mediated silencing of CTSK in PDLF noticeably attenuated the TNFα-triggered upregulation of receptor activator of nuclear factor kappa-B ligand (RANKL), macrophage colony-stimulating factor, and RANKL/osteoprotegerin ratio, thereby abrogating the enhanced osteoclastogenesis-supporting activity of PDLF. Collectively, these results suggest a novel role of CTSK in the paracrine function of osteoclastogenesis-supporting cells in periodontal disease.


Sign in / Sign up

Export Citation Format

Share Document