scholarly journals Antidiabetic sulphonylureas activate mitochondrial permeability transition in rat skeletal muscle

2005 ◽  
Vol 145 (6) ◽  
pp. 785-791 ◽  
Author(s):  
Jolanta Skalska ◽  
Grazyna Debska ◽  
Wolfram S Kunz ◽  
Adam Szewczyk
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Khairat Bahgat Youssef El Baradie ◽  
Mohammad B. Khan ◽  
Bharati Mendhe ◽  
Jennifer Waller ◽  
Frederick O’Brien ◽  
...  

AbstractAcute ischemia–reperfusion injury in skeletal muscle is a significant clinical concern in the trauma setting. The mitochondrial permeability transition inhibitor NIM-811 has previously been shown to reduce ischemic injury in the liver and kidney. The effects of this treatment on skeletal muscle are, however, not well understood. We first used an in vitro model of muscle cell ischemia in which primary human skeletal myoblasts were exposed to hypoxic conditions (1% O2 and 5% CO2) for 6 h. Cells were treated with NIM-811 (0–20 µM). MTS assay was used to quantify cell survival and LDH assay to quantify cytotoxicity 2 h after treatment. Results indicate that NIM-811 treatment of ischemic myotubes significantly increased cell survival and decreased LDH in a dose-dependent manner. We then examined NIM-811 effects in vivo using orthodontic rubber bands (ORBs) for 90 min of single hindlimb ischemia. Mice received vehicle or NIM-811 (10 mg/kg BW) 10 min before reperfusion and 3 h later. Ischemia and reperfusion were monitored using laser speckle imaging. In vivo data demonstrate that mice treated with NIM-811 showed increased gait speed and improved Tarlov scores compared to vehicle-treated mice. The ischemic limbs of female mice treated with NIM-811 showed significantly lower levels of MCP-1, IL-23, IL-6, and IL-1α compared to limbs of vehicle-treated mice. Similarly, male mice treated with NIM-811 showed significantly lower levels of MCP-1 and IL-1a. These findings are clinically relevant as MCP-1, IL-23, IL-6, and IL-1α are all pro-inflammatory factors that are thought to contribute directly to tissue damage after ischemic injury. Results from the in vitro and in vivo experiments suggest that NIM-811 and possibly other mitochondrial permeability transition inhibitors may be effective for improving skeletal muscle salvage and survival after ischemia–reperfusion injury.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2586
Author(s):  
Sarah K. Burke ◽  
Angelo Solania ◽  
Dennis W. Wolan ◽  
Michael S. Cohen ◽  
Terence E. Ryan ◽  
...  

Elevated mitochondrial reactive oxygen species (mROS) and an increase in caspase-3 activity are established mechanisms that lead to skeletal muscle atrophy via the upregulation of protein degradation pathways. However, the mechanisms upstream of an increase in mROS and caspase-3 activity in conditions of muscle atrophy have not been identified. Based upon knowledge that an event known as mitochondrial permeability transition (MPT) causes an increase in mROS emission and the activation of caspase-3 via mitochondrial release of cytochrome c, as well as the circumstantial evidence for MPT in some muscle atrophy conditions, we tested MPT as a mechanism of atrophy. Briefly, treating cultured single mouse flexor digitorum brevis (FDB) fibers from adult mice with a chemical inducer of MPT (Bz423) for 24 h caused an increase in mROS and caspase-3 activity that was accompanied by a reduction in muscle fiber diameter that was able to be prevented by inhibitors of MPT, mROS, or caspase-3 (p < 0.05). Similarly, a four-day single fiber culture as a model of disuse caused atrophy that could be prevented by inhibitors of MPT, mROS, or activated caspase-3. As such, our results identify MPT as a novel mechanism of skeletal muscle atrophy that operates through mROS emission and caspase-3 activation.


2003 ◽  
Vol 2 (1) ◽  
pp. 167 ◽  
Author(s):  
L ARGAUD ◽  
O GATEAUROESCH ◽  
D MUNTEAN ◽  
L GOMEZ ◽  
L CHALABREYSSE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document