scholarly journals Mitochondrial Permeability Transition Causes Mitochondrial Reactive Oxygen Species- and Caspase 3-Dependent Atrophy of Single Adult Mouse Skeletal Muscle Fibers

Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2586
Author(s):  
Sarah K. Burke ◽  
Angelo Solania ◽  
Dennis W. Wolan ◽  
Michael S. Cohen ◽  
Terence E. Ryan ◽  
...  

Elevated mitochondrial reactive oxygen species (mROS) and an increase in caspase-3 activity are established mechanisms that lead to skeletal muscle atrophy via the upregulation of protein degradation pathways. However, the mechanisms upstream of an increase in mROS and caspase-3 activity in conditions of muscle atrophy have not been identified. Based upon knowledge that an event known as mitochondrial permeability transition (MPT) causes an increase in mROS emission and the activation of caspase-3 via mitochondrial release of cytochrome c, as well as the circumstantial evidence for MPT in some muscle atrophy conditions, we tested MPT as a mechanism of atrophy. Briefly, treating cultured single mouse flexor digitorum brevis (FDB) fibers from adult mice with a chemical inducer of MPT (Bz423) for 24 h caused an increase in mROS and caspase-3 activity that was accompanied by a reduction in muscle fiber diameter that was able to be prevented by inhibitors of MPT, mROS, or caspase-3 (p < 0.05). Similarly, a four-day single fiber culture as a model of disuse caused atrophy that could be prevented by inhibitors of MPT, mROS, or activated caspase-3. As such, our results identify MPT as a novel mechanism of skeletal muscle atrophy that operates through mROS emission and caspase-3 activation.

2002 ◽  
Vol 27 (4) ◽  
pp. 349-395 ◽  
Author(s):  
Andy J. Primeau ◽  
Peter J. Adhihetty ◽  
David A. Hood

Apoptosis, or programmed cell death, is now recognized to be an important cellular event during normal development and in the progression of specific diseases. Apoptosis can be triggered by stimuli initiating outside of the cell, or within the mitochondria, leading to the activation of caspases and subsequent cell death. Although apoptosis has been widely studied in a variety of tissues over the last 5 years, skeletal muscle and heart have been relatively ignored in this regard. Research on apoptosis in cardiac muscle has recently taken on a higher profile as the recognition emerges that it may be an important contributor to specific cardiac pathologies, particularly in response to ischemia-reperfusion in which reactive oxygen species are formed. In skeletal muscle, very few studies have been done under specific physiological (e.g., exercise) and pathophysiological (e.g., dystrophies, denervation, myopathies) conditions. Skeletal muscle is unique in that it is mutli-nucleated, and evidence suggests that it can undergo individual myonuclear apoptosis as well as complete cell death. This review discusses the basic cellular mechanisms of apoptosis, as well as the current evidence of this process in cardiac and skeletal muscle. The need for more work in this area is highlighted, particularly in exercise and training. Key words: transcription factors, reactive oxygen species, mitochondria, caspase, mitochondrial permeability transition


Sign in / Sign up

Export Citation Format

Share Document