scholarly journals Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules

2006 ◽  
Vol 148 (5) ◽  
pp. 619-628 ◽  
Author(s):  
Celia P Briscoe ◽  
Andrew J Peat ◽  
Stephen C McKeown ◽  
David F Corbett ◽  
Aaron S Goetz ◽  
...  
PLoS ONE ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. e50128 ◽  
Author(s):  
Hyo-Sup Kim ◽  
You-Cheol Hwang ◽  
Seung-Hoi Koo ◽  
Kyong Soo Park ◽  
Myung-Shik Lee ◽  
...  

Diabetes ◽  
2008 ◽  
Vol 57 (9) ◽  
pp. 2432-2437 ◽  
Author(s):  
M. Kebede ◽  
T. Alquier ◽  
M. G. Latour ◽  
M. Semache ◽  
C. Tremblay ◽  
...  

2020 ◽  
Vol 318 (4) ◽  
pp. R691-R700 ◽  
Author(s):  
Medha Priyadarshini ◽  
Connor Cole ◽  
Gautham Oroskar ◽  
Anton E. Ludvik ◽  
Barton Wicksteed ◽  
...  

The free fatty acid receptor 3 (FFA3) is a nutrient sensor of gut microbiota-generated nutrients, the short-chain fatty acids. Previously, we have shown that FFA3 is expressed in β-cells and inhibits islet insulin secretion ex vivo. Here, we determined the physiological relevance of the above observation by challenging wild-type (WT) and FFA3 knockout (KO) male mice with 1) hyperglycemia and monitoring insulin response via highly sensitive hyperglycemic clamps, 2) dietary high fat (HF), and 3) chemical-induced diabetes. As expected, FFA3 KO mice exhibited significantly higher insulin secretion and glucose infusion rate in hyperglycemic clamps. Predictably, under metabolic stress induced by HF-diet feeding, FFA3 KO mice exhibited less glucose intolerance compared with the WT mice. Moreover, similar islet architecture and β-cell area in HF diet-fed FFA3 KO and WT mice was observed. Upon challenge with streptozotocin (STZ), FFA3 KO mice initially exhibited a tendency for an accelerated incidence of diabetes compared with the WT mice. However, this difference was not maintained. Similar glycemia and β-cell mass loss was observed in both genotypes 10 days post-STZ challenge. Higher resistance to STZ-induced diabetes in WT mice could be due to higher basal islet autophagy. However, this difference was not protective because in response to STZ, similar autophagy induction was observed in both WT and FFA3 KO islets. These data demonstrate that FFA3 plays a role in modulating insulin secretion and β-cell response to stressors. The β-cell FFA3 and autophagy link warrant further research.


2017 ◽  
Vol 65 (8) ◽  
pp. 1116-1124 ◽  
Author(s):  
Stephanie R Villa ◽  
Rama K Mishra ◽  
Joseph L Zapater ◽  
Medha Priyadarshini ◽  
Annette Gilchrist ◽  
...  

Critical aspects of maintaining glucose homeostasis in the face of chronic insulin resistance and type 2 diabetes (T2D) are increased insulin secretion and adaptive expansion of beta cell mass. Nutrient and hormone sensing G protein-coupled receptors are important mediators of these properties. A growing body of evidence now suggests that the G protein-coupled receptor, free fatty acid receptor 2 (FFA2), is capable of contributing to the maintenance of glucose homeostasis by acting at the pancreatic beta cell as well as at other metabolically active tissues. We have previously demonstrated that Gαq/11-biased agonism of FFA2 can potentiate glucose stimulated insulin secretion (GSIS) as well as promote beta cell proliferation. However, the currently available Gαq/11-biased agonists for FFA2 exhibit low potency, making them difficult to examine in vivo. This study sought to identify Gαq/11-biased FFA2-selective agonists with potent GSIS-stimulating effects. To do this, we generated an FFA2 homology model that was used to screen a library of 10 million drug-like compounds. Although FFA2 and the related short chain fatty acid receptor FFA3 share 52% sequence similarity, our virtual screen identified over 50 compounds with predicted selectivity and increased potency for FFA2 over FFA3. Subsequent in vitro calcium mobilization assays and GSIS assays resulted in the identification of a compound that can potentiate GSIS via activation of Gαq/11with 100-fold increased potency compared with previously described Gαq/11-biased FFA2 agonists. These methods and findings provide a foundation for future discovery efforts to identify biased FFA2 agonists as potential T2D therapeutics.


RSC Advances ◽  
2016 ◽  
Vol 6 (52) ◽  
pp. 46356-46365 ◽  
Author(s):  
Zheng Li ◽  
Jianyong Yang ◽  
Weijie Gu ◽  
Guoshen Cao ◽  
Xiaoting Fu ◽  
...  

The free fatty acid receptor 1 (FFA1) plays a key role in amplifying glucose-stimulated insulin secretion in pancreatic β-cells.


2005 ◽  
Vol 322 (2) ◽  
pp. 207-215 ◽  
Author(s):  
A. Salehi ◽  
E. Flodgren ◽  
N. E. Nilsson ◽  
J. Jimenez-Feltstrom ◽  
J. Miyazaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document