scholarly journals Stem cell factor leads to reduced blood processing during apheresis or the use of whole blood aliquots to support dose-intensive chemotherapy

1998 ◽  
Vol 22 (1) ◽  
pp. 33-38 ◽  
Author(s):  
A Weaver ◽  
NG Testa
Lung Cancer ◽  
2002 ◽  
Vol 36 (3) ◽  
pp. 321-326 ◽  
Author(s):  
Antonello Calderoni ◽  
Christian von Briel ◽  
Stefan Aebi ◽  
Max Solenthaler ◽  
Daniel C Betticher

Blood ◽  
1993 ◽  
Vol 81 (8) ◽  
pp. 2125-2130 ◽  
Author(s):  
S Sekhsaria ◽  
HL Malech

Peripheral blood hematopoietic progenitors (PBHP) are capable of colony growth in vitro. The effect of stem cell factor (SCF), interleukin-6 (IL-6), and basic fibroblast growth factor (bFGF) on myeloid colony proliferation of PBHP was determined. PBHP purified by positive selection with CD34-specific antibody were plated in semisolid agarose with reported plateau doses of interleukin-3 (IL-3), granulocyte- macrophage colony-stimulating factor (GM-CSF), and granulocyte colony- stimulating factor (G-CSF) to enhance myeloid colony growth. Experiments then were done to examine colony growth in response to SCF or with SCF and bFGF and/or IL6. SCF alone in the absence of any other growth factors did not support colony growth. SCF at a determined optimum concentration of 100 ng/mL added to the combination of IL-3, GM- CSF, and G-CSF enhanced colony growth and size relative to proliferation in response to the latter three factors alone (from 78 to 188 total colonies/10(4) PBHP plated and from 10 to 93 large [> 200 cells] colonies/10(4) PBHP plated). Furthermore, addition of bFGF and/or IL-6 to the combination of optimum concentrations of SCF, IL-3, GM-CSF, and G-CSF further enhanced colony number and size in a dose- dependent fashion. Using the optimum combination of all growth factors, we determined that the number of myeloid colony-forming PBHP in whole blood was similar between individuals at about three colonies per milliliter whole blood. We conclude that progenitors capable of responding to the early-acting growth factor, SCF, are represented in PBHP and that the number of circulating myeloid colony-forming PBHP is likely a regulated parameter that may have an important biologic function.


Blood ◽  
1993 ◽  
Vol 81 (8) ◽  
pp. 2125-2130 ◽  
Author(s):  
S Sekhsaria ◽  
HL Malech

Abstract Peripheral blood hematopoietic progenitors (PBHP) are capable of colony growth in vitro. The effect of stem cell factor (SCF), interleukin-6 (IL-6), and basic fibroblast growth factor (bFGF) on myeloid colony proliferation of PBHP was determined. PBHP purified by positive selection with CD34-specific antibody were plated in semisolid agarose with reported plateau doses of interleukin-3 (IL-3), granulocyte- macrophage colony-stimulating factor (GM-CSF), and granulocyte colony- stimulating factor (G-CSF) to enhance myeloid colony growth. Experiments then were done to examine colony growth in response to SCF or with SCF and bFGF and/or IL6. SCF alone in the absence of any other growth factors did not support colony growth. SCF at a determined optimum concentration of 100 ng/mL added to the combination of IL-3, GM- CSF, and G-CSF enhanced colony growth and size relative to proliferation in response to the latter three factors alone (from 78 to 188 total colonies/10(4) PBHP plated and from 10 to 93 large [> 200 cells] colonies/10(4) PBHP plated). Furthermore, addition of bFGF and/or IL-6 to the combination of optimum concentrations of SCF, IL-3, GM-CSF, and G-CSF further enhanced colony number and size in a dose- dependent fashion. Using the optimum combination of all growth factors, we determined that the number of myeloid colony-forming PBHP in whole blood was similar between individuals at about three colonies per milliliter whole blood. We conclude that progenitors capable of responding to the early-acting growth factor, SCF, are represented in PBHP and that the number of circulating myeloid colony-forming PBHP is likely a regulated parameter that may have an important biologic function.


Author(s):  
Susan Smith ◽  
Adrian Piliponsky ◽  
Mor-Li Hartman ◽  
Francesca Levi-Schaffer
Keyword(s):  

Blood ◽  
1999 ◽  
Vol 93 (2) ◽  
pp. 554-563 ◽  
Author(s):  
Christoph Heberlein ◽  
Jutta Friel ◽  
Christine Laker ◽  
Dorothee von Laer ◽  
Ulla Bergholz ◽  
...  

Abstract We show a dramatic downregulation of the stem cell factor (SCF) receptor in different hematopoietic cell lines by murine stroma. Growth of the human erythroid/macrophage progenitor cell line TF-1 is dependent on granulocyte-macrophage colony-stimulating factor (GM-CSF) or interleukin-3 (IL-3). However, TF-1 cells clone and proliferate equally well on stroma. Independent stroma-dependent TF-1 clones (TF-1S) were generated on MS-5 stroma. Growth of TF-1S and TF-1 cells on stroma still requires interaction between c-kit (SCF receptor) and its ligand SCF, because antibodies against c-kit inhibit growth to less than 2%. Surprisingly, c-kit receptor expression (RNA and protein) was downregulated by 2 to 3 orders of magnitude in TF-1S and TF-1 cells grown on stroma. This stroma-dependent regulation of the kit receptor in TF-1 was also observed on exposure to kit ligand-negative stroma, thus indicating the need for heterologous receptor ligand interaction. Removal of stroma induced upregulation by 2 to 4 orders of magnitude. Downregulation and upregulation of c-kit expression could also be shown for the megakaryocytic progenitor cell line M-07e and was comparable to that of TF-1, indicating that stroma-dependent regulation of c-kit is a general mechanism. Downregulation may be an economic way to compensate for the increased sensitivity of the c-kit/ligand interaction on stroma. The stroma-dependent c-kit regulation most likely occurs at the transcriptional level, because mechanisms, such as splicing, attenuation, differential promoter usage, or mRNA stability, could be excluded.


Sign in / Sign up

Export Citation Format

Share Document