Molecular weights of glycosylated and nonglycosylated forms of recombinant human stem cell factor determined by low-angle laser light scattering

1992 ◽  
Vol 203 (1) ◽  
pp. 53-57 ◽  
Author(s):  
Tsutomu Arakawa ◽  
Keith E. Langley ◽  
Keiichi Kameyama ◽  
Toshio Takagi
2021 ◽  
Vol 22 (12) ◽  
pp. 6361
Author(s):  
Eunyoung Lee ◽  
Michelle Novais de Paula ◽  
Sangki Baek ◽  
Huynh Kim Khanh Ta ◽  
Minh Tan Nguyen ◽  
...  

Human stem-cell factor (hSCF) stimulates the survival, proliferation, and differentiation of hematopoietic cells by binding to the c-Kit receptor. Various applications of hSCF require the efficient and reliable production of hSCF. hSCF exists in three forms: as two membrane-spanning proteins hSCF248 and hSCF229 and truncated soluble N-terminal protein hSCF164. hSCF164 is known to be insoluble when expressed in Escherichia coli cytoplasm, requiring a complex refolding procedure. The activity of hSCF248 has never been studied. Here, we investigated novel production methods for recombinant hSCF164 and hSCF248 without the refolding process. To increase the solubility of hSCF164, maltose-binding protein (MBP) and protein disulfide isomerase b’a’ domain (PDIb’a’) tags were attached to the N-terminus of hSCF164. These fusion proteins were overexpressed in soluble form in the Origami 2(DE3) E. coli strain. These solubilization effects were enhanced at a low temperature. His-hSCF248, the poly-His tagged form of hSCF248, was expressed in a highly soluble form without a solubilization tag protein, which was unexpected because His-hSCF248 contains a transmembrane domain. hSCF164 was purified using affinity and ion-exchange chromatography, and His-hSCF248 was purified by ion-exchange and gel filtration chromatography. The purified proteins stimulated the proliferation of TF-1 cells. Interestingly, the EC50 value of His-hSCF248 was 1 pg/mL, 100-fold lower than 9 ng/mL hSCF164. Additionally, His-hSCF248 decreased the doubling time, increased the proportion of S and G2/M stages in the cell cycle, and increased the c-Myc expression at a 1000-fold lower concentration than hSCF164. In conclusion, His-hSCF248 was expressed in a soluble form in E. coli and had stronger activity than hSCF164. The molecular chaperone, MBP, enabled the soluble overexpression of hSCF164.


1997 ◽  
Vol 14 (1) ◽  
pp. 67-79 ◽  
Author(s):  
Andrew C. W. Zannettino ◽  
Gabriella W. Aylett ◽  
David I. Leavesley ◽  
Torsten Pietsch ◽  
David G. Chang ◽  
...  

2009 ◽  
Vol 145 (3) ◽  
pp. 275-278 ◽  
Author(s):  
S. Kishimoto ◽  
S. Nakamura ◽  
H. Hattori ◽  
S.-i. Nakamura ◽  
F. Oonuma ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3419-3419
Author(s):  
Shinsuke Takagi ◽  
Yoriko Saito ◽  
Atsushi Hijikata ◽  
Satoshi Tanaka ◽  
Takashi Watanabe ◽  
...  

Abstract Abstract 3419 Recently, advances in xenograft models for human hemamtopoietic stem cells (HSCs), or the humanized mice, have begun to allow investigators to examine the differentiation of human hematopoietic and immune cells in vivo. However, lymphoid-skewed human hematopoietic development in the mouse bone marrow is one of the remaining limitations in the humanized mouse models. The inefficient human myeloid development could at least partly be attributed to the mouse microenvironment not fully supporting differentiation and maturation of human myeloid lineage. To overcome this problem, we focused on the role of membrane-bound human stem cell factor in supporting the maintenance of human HSCs and inducing the development of human myeloid cells and created human stem cell factor transgenic NOD/SCID/IL2rgKO (hSCF Tg NSG) mice. Transplantation of 5000–50000 cord blood-derived Lin-CD34+CD38- cells resulted in significantly higher engraftment of human CD45+ leukocytes at 3–6 months post-transplantation in the bone marrow, spleen, and peripheral blood of hSCF Tg NSG recipients compared with those of non-transgenic NSG recipients. The enhanced human CD45+ engraftment was most prominent in the bone marrow (hSCF Tg recipients: 98.0 +/− 1.3%, n= 15, non-Tg NSG controls: 75.3 +/− 7.3%, n=7). In the bone marrow, the frequency of human CD33+ myeloid cells within the total human CD45+ population was significantly higher in the hSCF Tg NSG recipients than in the non-Tg NSG recipients and constituted the majority of human hematopoietic cells (hSCF Tg recipients: 54.6 +/− 4.5%, n=15 and non-Tg NSG controls: 29.3 +/− 4.0%, n=7). Flow cytometric analysis demonstrated that the majority of engrafted human myeloid cells in the hSCF Tg recipient bone marrow were side-scatter high, HLA-DR negative granulocytes. Reflecting the effect of human SCF on the development of human mast cells, human c-Kit+CD203c+ mast cells were identified in the bone marrow, spleen, and gastrointestinal tracts of the hSCF Tg NSG recipients. Altogether, the in vivo humanized mouse model demonstrates the essential role of membrane-bound SCF in human myeloid development. The hSCF Tg NSG humanized mice may facilitate the in vivo investigation of human HSCs, myeloid progenitors and mature myeloid lineage. Disclosures: No relevant conflicts of interest to declare.


2010 ◽  
Vol 92B (1) ◽  
pp. 32-39 ◽  
Author(s):  
Satoko Kishimoto ◽  
Fumie Oonuma ◽  
Shingo Nakamura ◽  
Hidemi Hattori ◽  
Shin-ichiro Nakamura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document