scholarly journals Structural basis of actin filament capping at the barbed-end: a cryo-electron microscopy study

2006 ◽  
Vol 25 (23) ◽  
pp. 5626-5633 ◽  
Author(s):  
Akihiro Narita ◽  
Shuichi Takeda ◽  
Atsuko Yamashita ◽  
Yuichiro Maéda
Virology ◽  
2007 ◽  
Vol 367 (2) ◽  
pp. 422-427 ◽  
Author(s):  
Andrei Fokine ◽  
Valorie D. Bowman ◽  
Anthony J. Battisti ◽  
Qin Li ◽  
Paul R. Chipman ◽  
...  

Chromosoma ◽  
1986 ◽  
Vol 94 (5) ◽  
pp. 395-402 ◽  
Author(s):  
Elspeth M. Jack ◽  
Christine J. Harrison ◽  
Terence D. Allen ◽  
Rodney Harris

1991 ◽  
Vol 114 (5) ◽  
pp. 977-991 ◽  
Author(s):  
E M Mandelkow ◽  
E Mandelkow ◽  
R A Milligan

Microtubules display the unique property of dynamic instability characterized by phase changes between growth and shrinkage, even in constant environmental conditions. The phases can be synchronized, leading to bulk oscillations of microtubules. To study the structural basis of dynamic instability we have examined growing, shrinking, and oscillating microtubules by time-resolved cryo-EM. In particular we have addressed three questions which are currently a matter of debate: (a) What is the relationship between microtubules, tubulin subunits, and tubulin oligomers in microtubule dynamics?; (b) How do microtubules shrink? By release of subunits or via oligomers?; and (c) Is there a conformational change at microtubule ends during the transitions from growth to shrinkage and vice versa? The results show that (a) oscillating microtubules coexist with a substantial fraction of oligomers, even at a maximum of microtubule assembly; (b) microtubules disassemble primarily into oligomers; and (c) the ends of growing microtubules have straight protofilaments, shrinking microtubules have protofilaments coiled inside out. This is interpreted as a transition from a tense to a relaxed conformation which could be used to perform work, as suggested by some models of poleward chromosome movement during anaphase.


2014 ◽  
Vol 89 (2) ◽  
pp. 1428-1438 ◽  
Author(s):  
Hyunwook Lee ◽  
Sarah A. Brendle ◽  
Stephanie M. Bywaters ◽  
Jian Guan ◽  
Robert E. Ashley ◽  
...  

ABSTRACTHuman papillomavirus 16 (HPV16) is a worldwide health threat and an etiologic agent of cervical cancer. To understand the antigenic properties of HPV16, we pursued a structural study to elucidate HPV capsids and antibody interactions. The cryo-electron microscopy (cryo-EM) structures of a mature HPV16 particle and an altered capsid particle were solved individually and as complexes with fragment of antibody (Fab) from the neutralizing antibody H16.V5. Fitted crystal structures provided a pseudoatomic model of the virus-Fab complex, which identified a precise footprint of H16.V5, including previously unrecognized residues. The altered-capsid–Fab complex map showed that binding of the Fab induced significant conformational changes that were not seen in the altered-capsid structure alone. These changes included more ordered surface loops, consolidated so-called “invading-arm” structures, and tighter intercapsomeric connections at the capsid floor. The H16.V5 Fab preferentially bound hexavalent capsomers likely with a stabilizing effect that directly correlated with the number of bound Fabs. Additional cryo-EM reconstructions of the virus-Fab complex for different incubation times and structural analysis provide a model for a hyperstabilization of the capsomer by H16.V5 Fab and showed that the Fab distinguishes subtle differences between antigenic sites.IMPORTANCEOur analysis of the cryo-EM reconstructions of the HPV16 capsids and virus-Fab complexes has identified the entire HPV.V5 conformational epitope and demonstrated a detailed neutralization mechanism of this clinically important monoclonal antibody against HPV16. The Fab bound and ordered the apical loops of HPV16. This conformational change was transmitted to the lower region of the capsomer, resulting in enhanced intercapsomeric interactions evidenced by the more ordered capsid floor and “invading-arm” structures. This study advances the understanding of the neutralization mechanism used by H16.V5.


Sign in / Sign up

Export Citation Format

Share Document