scholarly journals Structural basis for stem cell factor–KIT signaling and activation of class III receptor tyrosine kinases

2007 ◽  
Vol 26 (3) ◽  
pp. 891-901 ◽  
Author(s):  
Heli Liu ◽  
Xiaoyan Chen ◽  
Pamela J Focia ◽  
Xiaolin He
Blood ◽  
2019 ◽  
Vol 134 (13) ◽  
pp. 1046-1058 ◽  
Author(s):  
Beáta Ramasz ◽  
Anja Krüger ◽  
Julia Reinhardt ◽  
Anupam Sinha ◽  
Michael Gerlach ◽  
...  

Key Points A dual signal from c-Kit and VEGFR-2 determines selective activation of HSCs and MPP2 in response to acute immune thrombocytopenia. VEGF-A and PDGF-BB relocalize stem cell factor in megakaryocytes, triggering proliferation of HSPCs.


2013 ◽  
Vol 41 (3) ◽  
pp. 271-280.e4 ◽  
Author(s):  
Harald Polzer ◽  
Hanna Janke ◽  
Diana Schmid ◽  
Wolfgang Hiddemann ◽  
Karsten Spiekermann

Blood ◽  
1996 ◽  
Vol 88 (2) ◽  
pp. 437-444 ◽  
Author(s):  
JV Matous ◽  
K Langley ◽  
K Kaushansky

Although much is now known about the biological properties of the c-kit receptor and its ligand, stem cell factor (SCF), little is known of the structural basis for the binding and function of this hematopoietic cytokine. By analyzing the activities of chimeric interspecies and homologue muteins and epitope mapping of a monoclonal antibody (MoAb) to the human protein, we have found that three distinct regions of SCF are essential for full biological function. Homologue and interspecies swapping of polypeptide sequences between the amino terminus and G35, between L79 and N97, and between R121 and D128 reduced or eliminated the ability of the chimera to act in synergy with murine granulocyte- macrophage colony-stimulating factor (GM-CSF) to promote hematopoietic colony formation. Moreover, a nonconformation-dependent MoAb that neutralizes human, but not murine SCF, was found to bind to residues within the L79-N97 segment of the human homologue. As these three regions localize to the putative first, third, and fourth helices of the protein, findings remarkably similar to previous studies of cytokines as diverse as growth hormone, GM-CSF, and interleukin (IL)-4, our results suggest that cytokines of multiple classes share a common functional organization.


2015 ◽  
Vol 10s3 ◽  
pp. BMI.S22433 ◽  
Author(s):  
Rimma Berenstein

Acute myeloid leukemia (AML) is a complex disease caused by deregulation of multiple signaling pathways. Mutations in class III receptor tyrosine kinases (RTKs) have been implicated in alteration of cell signals concerning the growth and differentiation of leukemic cells. Point mutations, insertions, or deletions of RTKs as well as chromosomal translocations induce constitutive activation of the receptor, leading to uncontrolled proliferation of undifferentiated myeloid blasts. Aberrations can occur in all domains of RTKs causing either the ligand-independent activation or mimicking the activated conformation. The World Health Organization recommended including RTK mutations in the AML classification since their detection in routine laboratory diagnostics is a major factor for prognostic stratification of patients. Polymerase chain reaction (PCR)–based methods are well-validated for the detection of fms-related tyrosine kinase 3 ( FLT3) mutations and can easily be applied for other RTKs. However, when methodological limitations are reached, accessory techniques can be applied. For a higher resolution and more quantitative approach compared to agarose gel electrophoresis, PCR fragments can be separated by capillary electrophoresis. Furthermore, high-resolution melting and denaturing high-pressure liquid chromatography are reliable presequencing screening methods that reduce the sample amount for Sanger sequencing. Because traditional DNA sequencing is time-consuming, next-generation sequencing (NGS) is an innovative modern possibility to analyze a high amount of samples simultaneously in a short period of time. At present, standardized procedures for NGS are not established, but when this barrier is resolved, it will provide a new platform for rapid and reliable laboratory diagnostic of RTK mutations in patients with AML. In this article, the biological and physiological role of RTK mutations in AML as well as possible laboratory methods for their detection will be reviewed.


Cell ◽  
2007 ◽  
Vol 130 (2) ◽  
pp. 323-334 ◽  
Author(s):  
Satoru Yuzawa ◽  
Yarden Opatowsky ◽  
Zhongtao Zhang ◽  
Valsan Mandiyan ◽  
Irit Lax ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document