scholarly journals Analysis of gene expression profiles in human systemic lupus erythematosus using oligonucleotide microarray

2003 ◽  
Vol 4 (3) ◽  
pp. 177-186 ◽  
Author(s):  
G-M Han ◽  
S-L Chen ◽  
N Shen ◽  
S Ye ◽  
C-D Bao ◽  
...  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Erika L. Hubbard ◽  
Michelle D. Catalina ◽  
Sarah Heuer ◽  
Prathyusha Bachali ◽  
Robert Robl ◽  
...  

Abstract Arthritis is a common manifestation of systemic lupus erythematosus (SLE) yet understanding of the underlying pathogenic mechanisms remains incomplete. We, therefore, interrogated gene expression profiles of SLE synovium to gain insight into the nature of lupus arthritis (LA), using osteoarthritis (OA) and rheumatoid arthritis (RA) as comparators. Knee synovia from SLE, OA, and RA patients were analyzed for differentially expressed genes (DEGs) and also by Weighted Gene Co-expression Network Analysis (WGCNA) to identify modules of highly co-expressed genes. Genes upregulated and/or co-expressed in LA revealed numerous immune/inflammatory cells dominated by a myeloid phenotype, in which pathogenic macrophages, myeloid-lineage cells, and their secreted products perpetuate inflammation, whereas OA was characterized by fibroblasts and RA of lymphocytes. Genes governing trafficking of immune cells into the synovium by chemokines were identified, but not in situ generation of germinal centers (GCs). Gene Set Variation Analysis (GSVA) confirmed activation of specific immune cell types in LA. Numerous therapies were predicted to target LA, including TNF, NFκB, MAPK, and CDK inhibitors. Detailed gene expression analysis identified a unique pattern of cellular components and physiologic pathways operative in LA, as well as drugs potentially able to target this common manifestation of SLE.


2007 ◽  
Vol 3 (5) ◽  
pp. 797-806 ◽  
Author(s):  
Michael Centola ◽  
Zoltan Szekanecz ◽  
Emese Kiss ◽  
Margit Zeher ◽  
Gyula Szegedi ◽  
...  

2020 ◽  
Author(s):  
Erika L. Hubbard ◽  
Michelle D. Catalina ◽  
Sarah Heuer ◽  
Prathyusha Bachali ◽  
Robert Robl ◽  
...  

ABSTRACTArthritis is a common manifestation of systemic lupus erythematosus (SLE) yet understanding of the underlying pathogenic mechanisms remains incomplete. We, therefore, interrogated gene expression profiles of SLE synovium to gain insight into the nature of lupus arthritis (LA), using osteoarthritis (OA) and rheumatoid arthritis (RA) as comparators. Knee synovia from SLE, OA, and RA patients were analyzed for differentially expressed genes (DEGs) and also by Weighted Gene Co-expression Network Analysis (WGCNA) to identify modules of highly co-expressed genes. Genes upregulated and/or co-expressed in LA revealed numerous immune/inflammatory cells dominated by a myeloid phenotype, whereas OA was characteristic of fibroblasts and RA of T- and B-cells. Upstream regulator analysis identified CD40L and inflammatory cytokines as drivers of the LA gene expression profile. Genes governing trafficking of immune cells into the synovium by chemokines were identified, but not in situ generation of germinal centers. GSVA confirmed activation of specific myeloid and lymphoid cell types in LA. Numerous therapies were predicted to target LA, including TNF, NFκB, MAPK, and CDK inhibitors. Detailed gene expression analysis identified a unique pattern of cellular components and physiologic pathways operative in LA, as well as drugs potentially able to target this common manifestation of SLE.


2007 ◽  
Vol 56 (5) ◽  
pp. 1579-1588 ◽  
Author(s):  
A. Nzeusseu Toukap ◽  
C. Galant ◽  
I. Theate ◽  
A. L. Maudoux ◽  
R. J. U. Lories ◽  
...  

2010 ◽  
Vol 185 (7) ◽  
pp. 4446-4456 ◽  
Author(s):  
Geeta Rai ◽  
Satyajit Ray ◽  
Jacqueline Milton ◽  
Jun Yang ◽  
Ping Ren ◽  
...  

2020 ◽  
Author(s):  
Laurel Woodridge ◽  
Paul Ashford ◽  
Elvira Chocano ◽  
George Robinson ◽  
Kirsty Waddington ◽  
...  

Women with Systemic Lupus Erythematosus (SLE) show significantly increased cardiovascular risk compared to the general population. However, despite CVD being a major cause of morbidity and mortality for these women, this increased risk is not managed clinically and tools to dissect and predict their cardiovascular risk are lacking. Notably, this elevated CVD risk is not captured by traditional risk factors. To explore molecular programs underlying asymptomatic atherosclerosis in SLE we used a well-characterised cohort of CVD-free women with SLE, scanned for asymptomatic atherosclerotic plaques using non-invasive ultrasound imaging of the carotid and femoral arteries. We investigated the transcriptomic profiles of CD14+ circulating monocytes in women with SLE with or without preclinical atherosclerosis. We identified unique monocytic gene expression profiles that distinguished the presence of preclinical plaques in women with SLE. In addition, advanced bioinformatic analysis revealed functional pathways and interactions between the genes identified that could explain mechanistic differences in plaque formation. We propose that these molecular signatures could help understand why a subset of women with SLE are predisposed to develop atherosclerosis and at higher risk of developing clinical CVD. Collectively with other efforts, these molecular insights will help to better define atherosclerosis in the context of SLE which will be critical for future patient stratification and identification of anti-atherosclerotic therapies.


2012 ◽  
Vol 40 (1) ◽  
pp. 391-399 ◽  
Author(s):  
Hai-Feng Pan ◽  
Rui-Xue Leng ◽  
Chen-Chen Feng ◽  
Xiang-Pei Li ◽  
Gui-Mei Chen ◽  
...  

Author(s):  
Francis R. Comerford ◽  
Alan S. Cohen

Mice of the inbred NZB strain develop a spontaneous disease characterized by autoimmune hemolytic anemia, positive lupus erythematosus cell tests and antinuclear antibodies and nephritis. This disease is analogous to human systemic lupus erythematosus. In ultrastructural studies of the glomerular lesion in NZB mice, intraglomerular dense deposits in mesangial, subepithelial and subendothelial locations were described. In common with the findings in many examples of human and experimental nephritis, including many cases of human lupus nephritis, these deposits were amorphous or slightly granular in appearance with no definable substructure.We have recently observed structured deposits in the glomeruli of NZB mice. They were uncommon and were found in older animals with severe glomerular lesions by morphologic criteria. They were seen most commonly as extracellular elements in subendothelial and mesangial regions. The deposits ranged up to 3 microns in greatest dimension and were often adjacent to deposits of lipid-like round particles of 30 to 250 millimicrons in diameter and with amorphous dense deposits.


Sign in / Sign up

Export Citation Format

Share Document