Selection and the rate of loss of genetic variation: Natural selection and genetic diversity

Heredity ◽  
2007 ◽  
Vol 99 (1) ◽  
pp. 1-2 ◽  
Author(s):  
D H Reed
2000 ◽  
Vol 23 (5) ◽  
pp. 676-677 ◽  
Author(s):  
Anthony J. Greene ◽  
William B. Levy

Stanovich & West (S&W) appear to overlook the adaptivity of variation. Behavioral variability, both between and within individuals, is an absolute necessity for phylogenetic and ontological adaptation. As with all heritable characteristics, inter-individual behavioral variation is the foundation for natural selection. Similarly, intra-individual variation allows a broad exploration of potential solutions. Variation increases the likelihood that more optimal behaviors are available for selection. Four examples of the adaptivity of variation are discussed: (a) Genetic variation as it pertains to behavior and natural selection; (b) behavioral and cognitive aspects of mate selection which may facilitate genetic diversity; (c) variation as a strategy for optimizing learning through greater exploration; and (d) behavioral variation coupled with communication as a means to propagate individually discovered behavioral success.


2018 ◽  
Author(s):  
Daniel Koenig ◽  
Jörg Hagmann ◽  
Rachel Li ◽  
Felix Bemm ◽  
Tanja Slotte ◽  
...  

ABSTRACTGenetic drift is expected to remove polymorphism from populations over long periods of time, with the rate of polymorphism loss being accelerated when species experience strong reductions in population size. Adaptive forces that maintain genetic variation in populations, or balancing selection, might counteract this process. To understand the extent to which natural selection can drive the retention of genetic diversity, we document genomic variability after two parallel species-wide bottlenecks in the genus Capsella. We find that ancestral variation preferentially persists at immunity related loci, and that the same collection of alleles has been maintained in different lineages that have been separated for several million years. Our data point to long term balancing selection as an important factor shaping the genetics of immune systems in plants and as the predominant driver of genomic variability after a population bottleneck.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 534e-534 ◽  
Author(s):  
J. Staub ◽  
Felix Sequen ◽  
Tom Horejsi ◽  
Jin Feng Chen

Genetic variation in cucumber accessions from China was assessed by examining variation at 21 polymorphic isozyme loci. Principal component analysis of allelic variation allowed for the depiction of two distinct groupings of Chinese accessions collected in 1994 and 1996 (67 accessions). Six isozyme loci (Gpi, Gr, Mdh-2, Mpi-2, Pep-gl, and Pep-la) were important in elucidating these major groups. These groupings were different from a single grouping of Chinese 146 accessions acquired before 1994. Allelic variation in Chinese accessions allowed for comparisons with other accessions in the U.S. National Plant Germplasm System (U.S. NPGS) collection grouped by continent and sub-continent. When Chinese accessions taken collectively were compared with an array of 853 C. sativus U.S. NPGS accessions examined previously, relationships differed between accessions grouped by country or subcontinent. Data indicate that acquisition of additional Chinese and Indian cucumber accessions would be strategically important for increasing genetic diversity in the U.S. NPGS cucumber collection.


Rice ◽  
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Ai-ling Hour ◽  
Wei-hsun Hsieh ◽  
Su-huang Chang ◽  
Yong-pei Wu ◽  
Han-shiuan Chin ◽  
...  

Abstract Background Rice, the most important crop in Asia, has been cultivated in Taiwan for more than 5000 years. The landraces preserved by indigenous peoples and brought by immigrants from China hundreds of years ago exhibit large variation in morphology, implying that they comprise rich genetic resources. Breeding goals according to the preferences of farmers, consumers and government policies also alter gene pools and genetic diversity of improved varieties. To unveil how genetic diversity is affected by natural, farmers’, and breeders’ selections is crucial for germplasm conservation and crop improvement. Results A diversity panel of 148 rice accessions, including 47 cultivars and 59 landraces from Taiwan and 42 accessions from other countries, were genotyped by using 75 molecular markers that revealed an average of 12.7 alleles per locus with mean polymorphism information content of 0.72. These accessions could be grouped into five subpopulations corresponding to wild rice, japonica landraces, indica landraces, indica cultivars, and japonica cultivars. The genetic diversity within subpopulations was: wild rices > landraces > cultivars; and indica rice > japonica rice. Despite having less variation among cultivars, japonica landraces had greater genetic variation than indica landraces because the majority of Taiwanese japonica landraces preserved by indigenous peoples were classified as tropical japonica. Two major clusters of indica landraces were formed by phylogenetic analysis, in accordance with immigration from two origins. Genetic erosion had occurred in later japonica varieties due to a narrow selection of germplasm being incorporated into breeding programs for premium grain quality. Genetic differentiation between early and late cultivars was significant in japonica (FST = 0.3751) but not in indica (FST = 0.0045), indicating effects of different breeding goals on modern germplasm. Indigenous landraces with unique intermediate and admixed genetic backgrounds were untapped, representing valuable resources for rice breeding. Conclusions The genetic diversity of improved rice varieties has been substantially shaped by breeding goals, leading to differentiation between indica and japonica cultivars. Taiwanese landraces with different origins possess various and unique genetic backgrounds. Taiwanese rice germplasm provides diverse genetic variation for association mapping to unveil useful genes and is a precious genetic reservoir for rice improvement.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wen-Wen Li ◽  
Li-Qiang Liu ◽  
Qiu-Ping Zhang ◽  
Wei-Quan Zhou ◽  
Guo-Quan Fan ◽  
...  

AbstractTo clarify the phytogeography of Prunus armeniaca L., two chloroplast DNA fragments (trnL-trnF and ycf1) and the nuclear ribosomal DNA internal transcribed spacer (ITS) were employed to assess genetic variation across 12 P. armeniaca populations. The results of cpDNA and ITS sequence data analysis showed a high the level of genetic diversity (cpDNA: HT = 0.499; ITS: HT = 0.876) and a low level of genetic differentiation (cpDNA: FST = 0.1628; ITS: FST = 0.0297) in P. armeniaca. Analysis of molecular variance (AMOVA) revealed that most of the genetic variation in P. armeniaca occurred among individuals within populations. The value of interpopulation differentiation (NST) was significantly higher than the number of substitution types (GST), indicating genealogical structure in P. armeniaca. P. armeniaca shared genotypes with related species and may be associated with them through continuous and extensive gene flow. The haplotypes/genotypes of cultivated apricot populations in Xinjiang, North China, and foreign apricot populations were mixed with large numbers of haplotypes/genotypes of wild apricot populations from the Ili River Valley. The wild apricot populations in the Ili River Valley contained the ancestral haplotypes/genotypes with the highest genetic diversity and were located in an area considered a potential glacial refugium for P. armeniaca. Since population expansion occurred 16.53 kyr ago, the area has provided a suitable climate for the population and protected the genetic diversity of P. armeniaca.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Li-Yun Lin ◽  
Hui-Ying Huang ◽  
Xue-Yan Liang ◽  
Dong-De Xie ◽  
Jiang-Tao Chen ◽  
...  

Abstract Background Thrombospondin-related adhesive protein (TRAP) is a transmembrane protein that plays a crucial role during the invasion of Plasmodium falciparum into liver cells. As a potential malaria vaccine candidate, the genetic diversity and natural selection of PfTRAP was assessed and the global PfTRAP polymorphism pattern was described. Methods 153 blood spot samples from Bioko malaria patients were collected during 2016–2018 and the target TRAP gene was amplified. Together with the sequences from database, nucleotide diversity and natural selection analysis, and the structural prediction were preformed using bioinformatical tools. Results A total of 119 Bioko PfTRAP sequences were amplified successfully. On Bioko Island, PfTRAP shows its high degree of genetic diversity and heterogeneity, with π value for 0.01046 and Hd for 0.99. The value of dN–dS (6.2231, p < 0.05) hinted at natural selection of PfTRAP on Bioko Island. Globally, the African PfTRAPs showed more diverse than the Asian ones, and significant genetic differentiation was discovered by the fixation index between African and Asian countries (Fst > 0.15, p < 0.05). 667 Asian isolates clustered in 136 haplotypes and 739 African isolates clustered in 528 haplotypes by network analysis. The mutations I116T, L221I, Y128F, G228V and P299S were predicted as probably damaging by PolyPhen online service, while mutations L49V, R285G, R285S, P299S and K421N would lead to a significant increase of free energy difference (ΔΔG > 1) indicated a destabilization of protein structure. Conclusions Evidences in the present investigation supported that PfTRAP gene from Bioko Island and other malaria endemic countries is highly polymorphic (especially at T cell epitopes), which provided the genetic information background for developing an PfTRAP-based universal effective vaccine. Moreover, some mutations have been shown to be detrimental to the protein structure or function and deserve further study and continuous monitoring.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 291
Author(s):  
Biao Ni ◽  
Jian You ◽  
Jiangnan Li ◽  
Yingda Du ◽  
Wei Zhao ◽  
...  

Ecological adaptation plays an important role in the process of plant expansion, and genetics and epigenetics are important in the process of plant adaptation. In this study, genetic and epigenetic analyses and soil properties were performed on D. angustifolia of 17 populations, which were selected in the tundra zone on the western slope of the Changbai Mountains. Our results showed that the levels of genetic and epigenetic diversity of D. angustifolia were relatively low, and the main variation occurred among different populations (amplified fragment length polymorphism (AFLP): 95%, methylation sensitive amplification polymorphism (MSAP): 87%). In addition, DNA methylation levels varied from 23.36% to 35.70%. Principal component analysis (PCA) results showed that soil properties of different populations were heterogeneous. Correlation analyses showed that soil moisture, pH and total nitrogen were significantly correlated with genetic diversity of D. angustifolia, and soil temperature and pH were closely related to epigenetic diversity. Simple Mantel tests and partial Mantel tests showed that genetic variation significantly correlated with habitat or geographical distance. However, the correlation between epigenetic variation and habitat or geographical distance was not significant. Our results showed that, in the case of low genetic variation and genetic diversity, epigenetic variation and DNA methylation may provide a basis for the adaptation of D. angustifolia.


1992 ◽  
Vol 6 ◽  
pp. 292-292
Author(s):  
Robert Titus

Species populations commonly carry a great deal of genetic variation which is not expressed in individual phenotypes. Cryptic variation can be carried in recessive alleles, in cases of heterosis, or where modifier genes inhibit expression of the hidden trait. Other genetic and ecological factors also allow cryptic variation. Stabilizing selection prevents the expression of hidden traits; normalizing selection weeds out the deviants and canalizing selection suppresses their traits. Together the two keep the species near the top of the adaptive peak. Cryptic variation balances a species' need to be well-adapted to its environment and also for it to maintain a reserve of variation for potential environmental change. Expression of cryptic traits is rare and is usually associated with times of greatly reduced natural selection and rapid population growth, when the lower slopes of the adaptive peak are exposed.A possible example of the manifestation of cryptic traits occurs within the lower Trentonian Rafinesquina lineage of New York State. The two most commonly reported species of the genus have been reappraised in terms of cryptic variation. Extensive collections of Rafinesquina “lennoxensis” reveal far more intergrading morphotypes than had hitherto been recognized. The form which Salmon (1942) described is broadly U-shaped with sulcate margins. It grades into very convex forms as well as sharply-defined or convexly geniculate types. Of great importance, all forms grade into the flat, U-shaped, alate R. trentonensis, which is, by far, the most common and widespread lower Trentonian member of the genus. The R. “lennoxensis” assemblage has a very narrow biostratigraphy, being confined to a few locations in the upper Napanee Limestone. This places it in a quiet, protected, low stress, lagoonal setting behind the barrier shoal facies of the Kings Falls Limestone.The R. “lennoxensis” assemblage does not constitute a natural biologic species; it is reinterpreted as an assemblage of phenodeviants occupying a low stress, low natural selection lagoon facies. All such forms should be included within R. trentonensis. Given the evolutionary plasticity of this genus, extensive cryptic variation is not surprising.


Sign in / Sign up

Export Citation Format

Share Document